
Software Engineering for Continuous Delivery of
Warfighting Capability

April 2023

Office of the Executive Director
for Systems Engineering and Architecture

Office of the Under Secretary of Defense
for Research and Engineering

Washington, D.C.

Distribution Statement A. Approved for public release. Distribution is unlimited.

Software Engineering for Continuous Delivery of Warfighting Capability

Executive Director for Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering
3030 Defense Pentagon
Washington, DC 20301
https://www.cto.mil
osd.r-e.comm@mail.mil | Attention: Software Engineering Team

Distribution Statement A. Approved for public release. Distribution is unlimited.
DOPSR Case # 23-S-1681.

Approved by

Thomas W. Simms
Acting Principal Deputy Director for Systems Engineering and Architecture

Office of the Under Secretary of Defense for Research and Engineering

Software Engineering for Continuous Delivery of Warfighting Capability
Change Record

Date Change Rationale

This page is intentionally blank.

Contents

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
v

Contents
1 Introduction.. 1

1.1 Purpose .. 1

1.2 Overview ... 1

1.3 Guide Organization ... 2

1.4 Summary ... 3

2 Policy and Guidance .. 4

2.1 Overarching Strategic Policy and Guidance ... 4

2.2 Software Engineering and Acquisition ... 5

2.3 Software Engineering and Technology Modernization ... 7

2.4 DoD Instruction 5000.02 ... 8

2.5 Software Acquisition Pathway .. 9

2.6 Human Systems Integration .. 10

3 Technology Modernization .. 11

3.1 Evolution in Software Technology ... 11

3.2 Software Technologies .. 13

3.3 Model-Based Systems Engineering .. 15

3.4 Technology Modernization Resources .. 16

4 Challenges and Best Practices ... 18

4.1 Requirements Best Practices ... 23

4.2 Software Architecture Best Practices .. 26

4.3 Design Best Practices .. 27

4.4 Coding Best Practices ... 28

4.5 Code Development and Test Best Practices .. 30

4.6 System Integration and Test Best Practices .. 32

4.7 Operations Best Practices .. 33

4.8 Agile Development Maturity .. 34

4.9 Summary ... 35

5 Software Metrics Use and Lessons Learned .. 36

5.1 Distinction between Waterfall and Agile/DevSecOps Metrics ... 36

5.2 Metrics Inform Decisions .. 37

5.3 Identifying and Selecting Software Metrics .. 39

5.4 Software Metrics and Reporting ... 41

5.5 Process Efficiency Metrics .. 45

5.6 Technical Performance and Mission Effectiveness Metrics ... 52

Contents

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
vi

5.7 Software Quality Metrics .. 52

5.8 Software Productivity Metrics .. 55

5.9 Continuous Integration, Test and Release, and Operations Metrics ... 56

5.10 Benchmarking and Parametric Analysis ... 58

5.11 Weibull Analysis of Defect Trends ... 64

6 Software Engineering and Workforce Competencies .. 69

6.1 DoD Five-Tiered Competency Framework ... 69

6.2 RAND Software Competency Study ... 71

6.3 Agile/DevSecOps Software Factory ... 76

6.4 Organizational Competency Needs ... 77

6.5 DoD Digital Talent Management Forum .. 78

6.6 DoD Cyber Workforce Framework ... 78

7 Contracting for Software Engineering in DoD .. 80

7.1 Agile and DevSecOps Software Development Contracting .. 80

7.2 Contract Types .. 81

7.3 Contracting Maturity Models .. 82

7.4 Agile Software Development using Scrum ... 83

7.5 Roles and Responsibilities .. 84

7.6 Product Vision ... 87

7.7 Product Roadmap .. 87

7.8 Product Backlog .. 88

7.9 Sprint Process .. 90

7.10 Pricing ... 94

7.11 Warranties and Indemnities ... 96

7.12 Termination ... 98

7.13 Intellectual Property Rights ... 98

7.14 Dispute Resolution .. 99

8 Artificial Intelligence and Machine Learning .. 100

8.1 Background on Artificial Intelligence and Machine Learning .. 101

8.2 Chief Digital and Artificial Intelligence Office (CDAO) Strategy ... 103

8.3 OUSD(R&E) Artificial Intelligence Software Roadmap .. 103

8.4 Vision for Accelerated, Continuous Delivery of AI/ML Capability ... 106

8.5 Summary ... 108

Glossary .. 109

Acronyms .. 122

References ... 125

Contents

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
vii

Figures

Figure 1-1. Shift from Traditional to Modern Software Engineering Practices .. 2

Figure 2-1. DoD Instruction 5000.02, Adaptive Acquisition Framework (AAF) ... 8

Figure 2-2. AAF Software Acquisition Pathway .. 9

Figure 3-1. Five Aspects of Software Technology Changes ... 11

Figure 5-1. Team Velocity .. 46

Figure 5-2. Cumulative Flow Diagram ... 49

Figure 5-3. Release/Version Burndown – Plan vs. Actual .. 51

Figure 5-4. Comparing Planned, Forecast, and Actual Performance .. 60

Figure 5-5. Schedule Optimism vs. Realism ... 62

Figure 5-6. Planned vs. Observed Staffing Levels .. 63

Figure 5-7. Cumulative Defects .. 66

Figure 5-8. Weibull/Rayleigh Curve Models Defect Rates .. 67

Figure 6-1. Five-Tiered Competency Framework .. 70

Figure 7-1. Contracting Practices Maturity ... 83

Figure 7-2. Scrum Ceremonies ... 91

Figure 8-1. AI Adoption Layer Model .. 106

Figure 8-2. AI Process Automation to the Edge ... 107

Tables

Table 2-1. Overarching Strategic Guidance .. 5

Table 2-2. Software Engineering and Acquisition Policy and Guidance .. 5

Table 2-3. DoD Software Engineering and Technology Modernization Policy and Guidance 7

Table 3-1. Technology Modernization Resources .. 16

Table 4-1. Challenges and Best Practices by Development Stage .. 19

Table 5-1. Sample Metrics Mapped to Purpose .. 42

Table 5-2. Sprint or Release Burndown Metric Indications ... 51

Table 5-3. Continuous Integration Metrics ... 56

Table 5-4. Test and Release Metrics ... 57

Table 5-5. Operations Metrics .. 58

Table 5-6. Core Benchmarking Metrics .. 59

Table 6-1. DoD Software Acquisition Workforce Competencies (RAND Study) 71

Table 7-1. Contracting Types ... 82

This page is intentionally blank.

1. Introduction

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
1

1 Introduction

1.1 Purpose

This guide is intended to help Department of Defense (DoD) Program Management Offices
(PMOs), defense engineers, software engineers, and acquisition officials plan and execute
software development in an environment of changing software technologies, software
engineering practices, software requirements, and software acquisition practices. The guide
assumes the reader is familiar with traditional DoD systems and software engineering practice. It
provides readers with information on recent changes in policy and practice and provides lessons
from DoD programs.

The Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E))
prepared this guide with coordination from subject matter experts (SMEs) from across the DoD
Components and defense industry. The guide draws on experience and best practices from more
than a decade of program engagements on software-enabled systems spanning all warfighting
domains.

1.2 Overview

This guide is an element of a broader strategy to modernize software engineering and acquisition
activities to deliver superior capability to the warfighter quickly, safely, and effectively, in
keeping with the National Defense Strategy (NDS 2022) and the DoD mission. The principal
challenge in achieving this modernization is finding ways to move from a traditional process
characterized by large batches of capability delivered over long periods of time to a more
continuous or Agile process characterized by delivering increments of capability over many short
cycles while continuously maintaining an acceptable cybersecurity risk posture (DSB 2018)
(DIB 2019b). These priorities are reflected in DoD policy and guidance issued between 2018 and
early 2022 (see References).

This guide assists programs in adopting modern software development practices that apply more
automation and engineering rigor to deliver better software faster. The Department is developing
new software workforce competencies to support technology modernization and new ways of
working. Software engineering metrics and contracting vehicles are changing how DoD manages
software development in acquisition. Software technologies such as artificial intelligence (AI)
and machine learning (ML) are influencing how we develop, test, and deploy the next generation
of warfighting capability. This guide seeks to reinforce the defense software modernization and
help acquisition programs overcome software development challenges.

1. Introduction

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
2

Figure 1-1 describes traditional and modern software development approaches and their
characteristics.

Source: OUSD(R&E) SE&A Software Team

Figure 1-1. Shift from Traditional to Modern Software Engineering Practices

1.3 Guide Organization

The guide is organized as follows:

• Section 1, Introduction, explains the purpose and organization of the guide.

• Section 2, Policy and Guidance, presents major sources that guide DoD software
initiatives, including national strategy and DoD issuances.

• Section 3, Technology Modernization, discusses emerging concepts in software
engineering and technology that influence DoD software development.

• Section 4, Challenges and Best Practices, discusses challenges observed in DoD software
development and acquisition. It suggests how programs can adapt commercial
techniques, especially Agile/Development, Security, and Operations (DevSecOps), to
military systems, and it discusses challenges ranging from budgeting to security and
safety.

• Section 5, Software Metrics Use, discusses Agile/DevSecOps metrics as well as more
traditional metrics. The section provides information on who uses what types of metrics,
why those metrics are used, and what decisions they inform. The case studies included in
this section digest the direct experience of the authors of this guide.

• Section 6, Software Engineering and Workforce Competencies, outlines workforce
competencies required to support modern software development and delivery.

1. Introduction

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
3

• Section 7, Contracting for Software Engineering, offers advice on how to structure
agreements for software engineering that can support rapid delivery of warfighting
capability and flexibility in managing the effort.

• Section 8, Artificial Intelligence and Machine Learning, offers background on these areas
of software of growing importance in warfare, including a taxonomy of AI/ML as a field,
and the Department’s strategic approach and vision for pushing these technologies out to
the edge of our warfighting systems.

1.4 Summary

This guide helps defense acquisition programs:

• Plan and execute software development to deliver capability faster.

• Make that capability more robust and more secure.

• Adopt modern software technologies and best practices.

• Learn from recent software engineering experience on programs.

• Develop new workforce competencies in support of modern software engineering.

• Select appropriate metrics to manage and oversee software development.

• Understand how AI/ML may affect conventional practices.

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
4

2 Policy and Guidance

• DoD revised its defense acquisition process to include six pathways that programs may
tailor depending on the maturity and urgency of the acquisition.

• Software Acquisition is one of the new pathways, intended to modernize software
development and deliver better software faster.

• DoD is implementing the DoD Software Modernization Strategy it released in
November 2021.

Between 2018 and 2022, DoD revised several areas of policy and guidance to modernize the way
the Department acquires, develops, operates, and manages software across the life cycle. This
section reviews significant changes. DoD policy is mandatory direction, whereas guidance
provides recommendations, best practices, and lessons learned.

The policy revisions offer new options and remove old constraints, increasing the opportunity for
innovation by allowing for more localized decision making by a program. The policy and
guidance updates should prepare programs to employ new administrative vehicles, management
constructs, and modern software engineering practices to increase resilience and help the
Department develop and deliver needed capability faster.

DoD software engineering policy and guidance may be decomposed into three tiers:

• Overarching strategic policy and guidance, including the National Defense Strategy
and Defense Science Board (DSB) advisory reports.

• Software engineering and acquisition policy and guidance, including the National
Defense Authorization Act (NDAA) and DoD issuances such as DoD Instruction (DoDI)
5000.02, “Operation of the Adaptive Acquisition Framework (AAF),” which enables
adoption of modern software engineering practices through the Software Acquisition
pathway.

• Software engineering and technology modernization policy and guidance, such as the
Federal Cloud Computing and DoD software modernization initiatives. On balance these
focus more on technology than on process.

2.1 Overarching Strategic Policy and Guidance

Table 2-1 lists major sources of DoD-wide strategic guidance as of this writing.

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
5

Table 2-1. Overarching Strategic Guidance

Title Office Year Guidance
National Defense Strategy Secretary of Defense 2022 Guidance

DoD Software Modernization Strategy Department of Defense 2021 Guidance
DoD Software Science and
Technology Strategy

Under Secretary of
Defense, Research and
Engineering

2021 Guidance

Software Acquisition and Practices Defense Innovation Board 2019 Guidance
Design and Acquisition of Software
for Defense Systems

Defense Science Board 2018 Guidance

The National Defense Strategy (NDS Fact Sheet 2022) continues to emphasize modernizing
software engineering practices as part of overall “reforms to accelerate force development,
getting the technology we need more quickly, and making investments in the extraordinary
people of the Department, who remain our most valuable resource.”

The DoD Software Modernization Strategy (2021) identifies a vision, along with goals and
objectives, with the purpose of delivering better software faster.

The Defense Innovation Board (DIB 2019b) and Defense Science Board (DSB 2018) identified
software development challenges facing the Department. Both provided recommendations for
ways to modernize DoD software engineering practices to deliver capability more rapidly.

2.2 Software Engineering and Acquisition

Table 2-2 lists congressional, DoD, and industry sources that pertain to software engineering
acquisition ordered by year.

Table 2-2. Software Engineering and Acquisition Policy and Guidance

Title Office Year Policy/Guidance
DoDI 5000.02 Operation of the Adaptive
Acquisition Framework, Change 1
Effective June 8, 2022

OUSD(A&S) 2022 Policy

DoDI 5000.95 Human Systems
Integration in Defense Acquisition

OUSD(R&E) 2022 Policy

Systems Engineering Guidebook OUSD(R&E) 2022 Guidance

Engineering of Defense Systems
Guidebook

OUSD(R&E) 2022 Guidance

DAU Adaptive Acquisition Framework DAU 2022 Guidance

ISO/IEC/IEEE 14764:2022, Software
Engineering – Software Life Cycle
Processes – Maintenance

ISO/IEC/IEEE 2022 Guidance

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
6

Title Office Year Policy/Guidance
ISO/IEC/IEEE 24641:2021(E) Systems
and Software Engineering – Methods
and tools for model-based systems and
software engineering.

ISO/IEC/IEEE 2021 Guidance

DoD Software Science and Technology
Strategy and Report to Congress

OUSD(R&E) 2021

Report

DoDI 5000.87 Operation of the Software
Acquisition Pathway

OUSD(A&S) 2020 Policy

DoDI 5000.88 Engineering of Defense
Systems

OUSD(R&E) 2020 Policy

DoDI 5000.89, Test and Evaluation OUSD(R&E)/DOT&E 2020 Policy

DoDI 5000.90, Cybersecurity for
Acquisition Decision Authorities and
Program Managers

OUSD(A&S) 2020 Policy

Title 10 USC Chapter 327 Subchapter I,
"Modular Open Systems Approach in
Development of Weapon Systems"

U.S. Congress 2021 Statute

Title 10 USC Chapter 146 Section 2460,
“Definition of depot-level maintenance
and repair

U.S. Congress 2021 Statute

Modular Open Systems Approach
(MOSA) Reference Frameworks in
Defense Acquisition Programs

OUSD(R&E) 2020 Guidance

National Defense Authorization Act,
868(c), “Implementation of
Recommendations of the Final Report of
the Defense Science Board Task Force
on the Design and Acquisition of
Software for Defense Systems”

U.S. Congress 2019 Statute

DoDI 5010.44 Intellectual Property (IP)
Acquisition and Licensing

OUSD(A&S) 2019 Policy

DoD Digital Modernization Strategy DoD CIO 2019 Guidance

DoD Digital Engineering Strategy OUSD(R&E) 2018 Guidance

DoD 4151.18, Maintenance of Military
Materiel

DoD 2017 Policy

ISO/IEC/IEEE International Standard -
Systems and software engineering – Life
cycle management – Part 3: Guidelines
for the application of ISO/IEC/IEEE
12207 (software life cycle processes)

ISO/IEC/IEEE 2017 Guidance

IEEE Std 1633-2016, IEEE
Recommended Practice on Software
Reliability

IEEE 2017 Guidance

Federal Information Technology
Acquisition Reform Act

U.S. Congress 2014 Statute

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
7

The DoD Software Science and Technology Strategy (OUSD(R&E) Software S&T Strategy
2021) describes four strategic goals for delivering resilient software capability. The strategy is
intended to “guide strategic thinking within the Department with regard to modern software
development approaches and connecting the innovative capabilities developed from S&T
investments. The strategy is intended to be thought provoking and to enable a culture focused on
modern software development processes and tools on par with the commercial sector which the
Department can leverage to insert new and innovating software capabilities quickly into DoD
weapon systems” (page 4).

2.3 Software Engineering and Technology Modernization

Technology modernization has received much attention in DoD, and several DoD entities have
created materials to help support this transition. The materials include publications, online
tutorials and videos, training and consulting services, and assistance in setting up automated
software development pipelines. Table 2-3 lists relevant sources of policy and guidance.

Table 2-3. DoD Software Engineering and Technology Modernization Policy and Guidance

Title Office Year Policy/Guidance
National Institute of Standards and
Technology (NIST) SP 800-207 Zero
Trust Architecture

National Institute of
Standards and
Technology

2020 Article

Mission Engineering Guide OUSD(R&E) 2020 Guidance

Defense Modeling and Simulation
Reference Architecture (DMSRA)

OUSD(R&E) 2020 Guidance

Federal Cloud Computing Strategy CIO Council 2019 Policy

DevSecOps Academy Video Series
(website)

DAU 2019 Guidance

DoD Directive 5000.59 DoD Modeling
and Simulation (M&S) Management

OUSD(R&E) 2018 Policy

CJCSI 8510.01C Management of
Modeling and Simulation

Chairman of the Joint
Chiefs of Staff

2012 Policy

DoD DevSecOps Document Set
(website)

DoD CIO ongoing Guidance

Joint Federated Assurance Center
(website)

OUSD(R&E) ongoing Guidance

Modular Open Systems Community of
Practice (website)

DAU ongoing Guidance

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
8

2.4 DoD Instruction 5000.02

DoDI 5000.02, Change 1 (2022) cancelled the 2015 issuance of this instruction that was
designated 5000.02T during the transition period to establish a distinction between the two
issuances. The issuance presents an approach to tailoring program planning through the six AAF
pathways and distinguishes Software Acquisition as one of the pathways (Figure 2-1).

Source: DoDI 5000.02

Figure 2-1. DoD Instruction 5000.02, Adaptive Acquisition Framework (AAF)

Programs may tailor, combine, and transition among acquisition pathways to deliver capability
(DoDI 5000.02 2022). The DAU AAF web page “Selecting and Transitioning Pathways” (DAU
Selecting Pathways 2022) provides guidance to help programs select a pathway and tailor that
pathway to best deliver capability. The Engineering of Defense Systems Guidebook
(OUSD(R&E) 2022) also provides guidance for using the pathways.

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
9

2.5 Software Acquisition Pathway

The Software Acquisition pathway (Figure 2-2) is designed for software-intensive systems or for
software-intensive components or subsystems. The pathway facilitates rapid and continuous
delivery of software capability to the warfighter, integrating modern iterative software
development practices, such as Agile, Lean, human-centered design, and DevSecOps, to deliver
secure and resilient software capability rapidly and iteratively to the end user in the operational
environment.

Source: DoDI 5000.87

Figure 2-2. AAF Software Acquisition Pathway

A program selecting the Software Acquisition pathway must commit to delivering a Minimum
Viable Capability Release (MVCR) within one year from the date on which the funds are first
obligated. The pathway recognizes just two phases:

• Planning Phase. The planning phase focuses on understanding the users’ needs and
planning the approach to deliver capabilities to meet those needs.

o The planning phase is guided by a draft Capability Need Statement (CNS) developed
by the operational community, which the sponsor must approve before the execution
phase starts.

o In addition to functional requirements that address user needs, planning addresses
non-functional requirements such as security controls (encryption, access controls,
Risk Management Framework (RMF) requirements).

2. Policy and Guidance

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
10

• Execution Phase. The execution phase focuses on first scoping, developing, and
deploying a Minimum Viable Product (MVP) and MVCR to the warfighter/end user as
quickly as possible, and iteratively developing and deploying remaining capability
thereafter. Ideally, programs will target 3-to-6-month releases, with a preference to the
shortest time frame possible.

A program electing the Software Acquisition pathway is required to produce the following
artifacts as part of planning and execution:

• Acquisition Strategy

• Capability Needs Statement

• Test Strategy

• User Agreement

• Value Assessment

The DAU AAF Software Acquisition portal (2022) provides links to templates for these
documents.

2.6 Human Systems Integration

DoDI 5000.95, Human Systems Integration (HSI) in Defense Acquisition Programs (2022)
provides instruction to Program Managers and capability developers about planning, processes,
and artifacts required to execute activities to meet HSI requirements. The purpose of HSI is to
provide equal consideration of the human element along with the hardware and software
processes to engineer a system that optimizes total system performance and minimizes total
ownership costs. PMO staff, specifically the Lead Systems Engineer with HSI practitioner
support, analyze requirements to optimize total system performance and determine the most
effective, efficient, and affordable design. The PMO staff should use the analysis of the HSI
domains to help determine and investigate the science and technology gaps to address all aspects
of the system (hardware, software, and human).

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
11

3 Technology Modernization

• Product and technology life cycles are shorter, and the emphasis has shifted from
“projects” with a defined start and end to Agile/DevSecOps “products” that are never
done and continuously evolve to meet the need of end users.

Recent innovations revolutionize how software is designed, developed, tested, deployed, and
operated. Program Managers, software engineers, and other personnel engaged in acquisition and
development of software-enabled systems need to be familiar with these concepts. This section
discusses significant recent technologies and their implications for how DoD plans, executes, and
assesses software-intensive programs.

3.1 Evolution in Software Technology

Software technology is changing in five aspects, as illustrated in Figure 3-1 (Chaillan 2020).

Source: (Chaillan 2020)

Figure 3-1. Five Aspects of Software Technology Changes

Development processes are evolving from traditional document-driven Waterfall processes to the
more continuous Agile/DevSecOps processes. DoD Waterfall processes have been structured
around “projects” with a defined start and end (typically several years). The processes deliver a

https://dod365.sharepoint-mil.us/teams/OSDRE-SWEGuide/Shared%20Documents/General/2022/Feedback/2022-08-23-v2.0-Formal-Review-Package/Criticals%20-%20SWE_Guide_2.1_DD-818%20Comment%20Matrix_SEI.docx?web=1

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
12

product with a useful life of 5 to 10 years (although sometimes they have been left in place much
longer) but replacing or rebuilding the legacy product requires another major project entailing
significant effort, cost, and risk.

In newer efforts, the emphasis has shifted from “projects” with a defined start and end date to
“products” that are “never done” and continuously evolve to meet the needs of end users.
Product and technology life cycles are shorter, and architectures that once were large and
monolithic give way to Agile/DevSecOps architectures oriented around many loosely coupled
microservices developed independently by small teams.

Rather than relying on manual testing mechanisms at the end of development, testing is
automated and occurs on an ongoing basis, at the speed of the development team. Rather than
manually installing software on physical servers, developers may bundle applications into pre-
integrated containers, which can be dropped onto standard, highly virtualized infrastructure that
can adapt to meet the needs and demand of users. Processes for code and infrastructure builds,
integration, testing, release, and deployment all can be automated. These innovations enable
software engineers to develop and field applications in months or days rather than years.

Agile/DevSecOps offers several advantages:

• Replacing Waterfall with Agile/DevSecOps processes provides the ability to deliver
value earlier and to use working product and delivery data to validate future investment
(with less risky data-driven micro-investments) rather than relying on the promise of
value far into the future validated primarily by documentation (large and long-term
investments that are far more risky).

• Replacing Waterfall processes with Agile processes further mitigates risk because
requirements are not locked in and are allowed to adapt to changing needs of customers
and end users over time. This flexibility coupled with regular releases to the customer or
end user provides an opportunity to capture feedback that minimizes investment in
unneeded software features and requirements.

• Moving from monolithic to microservice-based architectures helps organizations scale to
hundreds or thousands of developers, efficiently, by enabling teams to develop and
deploy capability independently.

• Moving from manual deployment and packaging to containers enables a high degree of
automation that reduces system administration effort by orders of magnitude.

• Moving from hosted to cloud-based infrastructure helps to contain infrastructure costs by
providing increased scalability and flexibility using shared computing and network
resources.

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
13

Modern software development practices are not necessarily a universal solution to every
problem, but in a growing number of contexts modern software development practices offer
compelling advantages, reduce risk, and provide sound solutions.

3.2 Software Technologies

Following is a summary of several emerging software engineering technologies applicable to
DoD.

Application Programming Interface (API). “A system access point or library function that has a
well-defined syntax and is accessible from application programs or user code to provide well-
defined functionality” (NIST SP 1800-16 2020). An API lets the software interface with other
software. APIs open the door to creating new capability by connecting independently developed
systems so they can exchange data, automate repetitive processes, and create and deliver new
capabilities rapidly (often in unforeseen ways) in response to changing needs.

Container. “A standard unit of software that packages up code and all its dependencies, down to
but not including the operating system (OS). It is a lightweight, stand-alone, executable package
of software that includes everything needed to run an application except the OS: code, runtime,
system tools, system libraries and settings” (DSOF 2021).

Container Orchestration. A mechanism to scale the deployment, management, networking, and
availability of containers through automation. As the number of containers grows, the task of
managing them grows more complex. Containers need to be allocated to run, must be started and
monitored, and must be restarted when necessary. Container orchestration provides high
availability through replication, automation, resilience, load balancing, monitoring, ingress, and
more (DAU DevSecOps 2022).

Container Sidecar. A mechanism to monitor what is going on inside a container. The sidecar is
ideal for security monitoring and security policy enforcement. The sidecar is itself a container
that monitors the communications going into and coming out from another container instance.
Because it sits outside the container, a rogue application cannot tamper with the monitoring
software (DAU DevSecOps 2022).

The Cloud Native Computer Foundation (CNCF). An organization that defines broadly accepted
standards for containers and related technology. Use of CNCF-compliant containers is a
constraint found in DoD reference architectures (DoD CIO DSOERDK).

Continuous Integration/Continuous Delivery (CI/CD) Pipeline. An automated software
development pipeline that continuously integrates software changes into the system and delivers
those changes into the production system (DAU DevSecOps 2022).

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
14

Microkernels. A type of kernel that permits the customization of the OS. The microkernel runs in
the privileged domain of the hardware and provides low-level address space management as well
as interprocess communication. Operating system functions such as the virtual memory manager,
file system, and central processing unit (CPU) scheduler may be built on top of the microkernel
(see Virtual Machine.) Every service has its own address space to make the services secure, and
every application has its own separate address space. This separation protects applications, OS
services, and the kernel. Microkernel-based operating systems offer a high level of extensibility,
making it possible to customize the operating system’s services to meet the needs of the
application (Jaiswal n.d.).

Microservices. A distributed systems approach aimed at maximizing scalability by minimizing
the human communication needed among development teams. Microservices should be
considered when scalability of the development organization is a critical concern, for example, if
the organization needs to scale from 20 developers to 2,000 developers. Each microservice is a
small, self-contained service designed, built, and maintained by an individual or small team.
Microservices are (by definition) independently deployable and independently testable. Those
two properties distinguish microservices from traditional service-oriented architectures.
Microservices are deployable to production without live testing with the other services in the
system, so they must have very stable interfaces. Designers typically associate each microservice
with a simple bounded context focused on concepts from the operating (i.e., user) domain.
Microservices are not a panacea. The advantages of microservices come at the cost of accepting
substantial constraints on the design space. “Microservices is an organizational scaling pattern.
That is its advantage. If you don’t need to scale up development in your organization, you don’t
need microservices (although “services” may be a great idea)” (Farley 2022).

Service Mesh. A tool to manage the complex web of interconnections among containers. As the
number of containers grows, so does complexity of their communication. As container
orchestration automates the management of containers, the service mesh manages the
connections among them. Containers do not send messages directly but identify intended
recipients through the service mesh, which routes them to their destination. The service mesh can
re-route communications to bypass failures, avoid bottlenecks, monitor, and adjust network
resources to fluctuations in load and availability. In the absence of a service mesh, the code for
managing and rerouting connections would reside in the applications themselves, adding
significant complexity (DAU DevSecOps 2022).

Virtual Machine. A technology for virtualizing system resources such as the CPU, memory,
devices, and services such as network interfaces and file systems. An OS will not be able to tell
that a virtual machine is present between the OS and those resources. The OS will appear to have
the machine to itself, as most instructions run directly on the hardware and performance is
comparable to that of bare metal. Virtual machines let the user run multiple operating system
instances on the same hardware and manages swapping between them transparently. Virtual

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
15

machines are a key technology enabling the transition from physical servers to virtual servers in
the Deployment and Packaging column of Figure 3-1. Virtual machines also can play a role in
embedded software by facilitating deployment, continuous monitoring, secure boot, and cyber
defense (Humble and Farley 2011).

Zero Trust (ZT). A “term for an evolving set of cybersecurity paradigms that move defenses
from static, network-based perimeters to focus on users, assets, and resources” (NIST SP 800-
207 2020). ZT is not so much a technology as an approach to security. This approach stands in
contrast to perimeter-based security built around firewalls and enclaves. Under the perimeter-
based approach, anyone outside the perimeter was considered untrusted, but once inside they
were considered trusted. Under ZT, everyone is suspect whether inside or outside. The system
architect assumes the presence of bad actors inside the network and makes architectural
decisions accordingly. All interactions between systems are authenticated so both endpoints
positively identify one another. All communications are encrypted between systems (NIST SP
800-207 2020).

3.3 Model-Based Systems Engineering

DoD is adopting more model-based systems engineering (MBSE) and model-based software
engineering methods to address changes in the information technology (IT) industry. A Practical
Software and Systems Management (PSM 2022) working group composed of DoD and defense
industry experts observed IT is “undergoing profound changes from traditional engineering
requirements, design, development, integration, and verification methods based on documents
and artifacts to a future based on digital models and cross-functional digital representations of
system designs and end-to-end solutions.”

The DoD Digital Engineering Strategy (2018) outlined five goals and provided a foundation for
DoD enterprise stakeholders across Government, industry, and academia to use in developing
digital transformation initiatives. The defense digital engineering community is now working to
implement the five goals:

1. Formalize the development, integration, and use of models to inform enterprise and
program decision making.

2. Provide an enduring, authoritative source of truth.

3. Incorporate technological innovation to improve the engineering practice.

4. Establish a supporting infrastructure and environment to perform activities, collaborate,
and communicate across stakeholders.

5. Transform the culture and workforce to adopt and support digital engineering across the
life cycle.

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
16

The PSM digital engineering measurement framework is intended to “help projects and
enterprises establish an initial path toward a measurably effective transition and implementation
of digital engineering processes, tools, methods and measures” (PSM 2022). The ISO/IEC/IEEE
DIS 24641:2021(E) (2021) standard addresses digital and model-based aspects of the
engineering process from the initial release of formalized applications of modeling to support
systems and software engineering. These two efforts are representative of increasing support for
digital engineering in both DoD and industry.

3.4 Technology Modernization Resources

This section has highlighted a few recent technical innovations that have changed DoD software
engineering and software development, but DoD is continually employing new technologies.
Table 3-1 lists additional resources of information on DoD reference architectures and enterprise
resources.

Table 3-1. Technology Modernization Resources

Resource Description
DoD Software Modernization Strategy (2021) and
DevSecOps Document Set

https://dodcio.defense.gov/libarary

• Provides the approach for achieving faster
delivery of software capabilities in support of
Department priorities.

• Informs DoD Component execution of DoD
Chief Information Officer (CIO) Capability
Programming Guidance in support of DoD CIO
budget certification for Cloud DevSecOps
investments.

• Specifies enterprise-wide implementation of
innovative acquisition authorities and policies,
to include DoD Instruction 5000.87, Operation
of the Software Acquisition Pathway .

• Promotes increased DoD Component
utilization of software factories and secure
continuous integration/continuous delivery
(CI/CD) pipelines.

DAU DevSecOps Academy Video Series

https://media.dau.edu

• Provides capsule introductions to DevSecOps,
Containers, Container Orchestration,
Infrastructure as Code, Zero Trust (ZT) Model,
Chaos Engineering, Telemetry, CI/CD
pipelines, and related topics.

Joint Federated Assurance Center

https://rt.cto.mil/stpp/syssec/jfac/
https://jfac.navy.mil

• Promotes and enables software assurance
and hardware assurance.

• Supports program offices by identifying and
facilitating access to DoD software assurance
and hardware assurance expertise and
capabilities to reduce vulnerabilities in fielded
DoD systems.

https://dodcio.defense.gov/libarary
https://dodcio.defense.gov/libarary
https://media.dau.edu/
https://rt.cto.mil/stpp/syssec/jfac/

3. Technology Modernization

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
17

Resource Description
DoD Zero Trust Reference Architecture

https://dodcio.defense.gov/library/

• Documents the Department’s approach to
cybersecurity.

• Shows how ZT supports the 2018 DoD Cyber
Strategy, the 2019 DoD Digital Modernization
Strategy, the 2021 Executive Order (EO) on
Improving the Nation’s Cybersecurity, and the
DoD CIO vision for:
o Creating a “more secure, coordinated,

seamless, transparent, and cost-effective
architecture that transforms data into
actionable information and ensures
dependable mission execution in the face of
a persistent cyber threat.”

• Specifies that ZT should be used to re-
prioritize and integrate existing DoD
capabilities and resources, while maintaining
availability and minimizing temporal delays in
authentication mechanisms, to address the
DoD CIO’s vision.

Zero Trust Architecture, NIST SP 800-207

https://pages.nist.gov/NIST-Tech-
Pubs/SP800.html

• Provides a canonical set of concepts,
definitions, and models for implementing
secure systems applying ZT principles and
approach.
o 7 tenets of ZT
o Logical components of ZT architecture
o Deployed variations of the ZT architecture
o Deployment scenarios and use cases
o Threats associated with ZT
o Possible interactions with existing Federal

guidance
o Migrating to ZT

Secure Software Development (SSDF)
Framework, Version 1.1, NISP SP 800-218

https://pages.nist.gov/NIST-Tech-
Pubs/SP800.html

• Provides recommendations for mitigating risk
of software vulnerabilities.
o Secure software development best

practices
o Build in cybersecurity at onset of software

development
o Open Web Application Security Project

(OWASP)
o Software Assurance Forum for Excellence

(SAFE) Code
Test Resource Management Center (TRMC)
Repository

https://www.trmc.osd.mil

• Provides technical guidance on setting up
platforms for DevSecOps orchestration and
distribution services.
o Confluence
o Jira
o Artifactory
o Jenkins
o and others

https://dodcio.defense.gov/library/
https://pages.nist.gov/NIST-Tech-Pubs/SP800.html
https://pages.nist.gov/NIST-Tech-Pubs/SP800.html
https://pages.nist.gov/NIST-Tech-Pubs/SP800.html
https://pages.nist.gov/NIST-Tech-Pubs/SP800.html
https://www.trmc.osd.mil/

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
18

4 Challenges and Best Practices

• Whereas Waterfall methods manage software development through documents and
milestone reviews, Agile/DevSecOps approaches manage development continuously
through automated development, testing, and deployment pipelines.

• Testing should guide development, measure progress, and ensure product quality while
also moving at the speed of the Agile system.

• A recurring challenge is adapting to change, and a recurring best practice is continuous
feedback to advance progress.

This section discusses how to anticipate and overcome challenges associated with software
engineering, especially in planning, execution, and assessment. It provides checklists and
questions to aid in managing these areas.

Whereas Waterfall methods manage software development through documents and milestone
reviews, Agile/DevSecOps approaches manage development continuously via automated
development, testing, and deployment pipelines (DIB 2019b). This section discusses software
engineering challenges and best practices in terms of the following development stages of the
Software Development Life Cycle (SDLC): Requirements, Architecture, Design, Coding,
Testing, System Integration and Test, and Operations.

As software development moves through the SDLC, some activities may be in Requirements
while others are in Coding and others in System Integration and Test. Programs should seek to
automate as much of the SDLC as possible.

Table 4-1 summarizes several challenges and best practices associated with each area. The
succeeding sections provide further discussion and recommendations to consider.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
19

Table 4-1. Challenges and Best Practices by Development Stage

Challenge Best Practices
Requirements (Section 4.1)

• Understanding what is needed.
• Understanding how a potential capability

addresses that need.
• Adapting as needs change in unpredictable

ways.
• Incorporating technical innovations.
• Managing volatile requirements.
• Ensuring efficient human system interactions.
• Tracing requirements from high-level

Capability Needs Statement to user stories.

• Employ rapid prototyping and early
engagement with the stakeholders, primarily
focusing on customers/end users.

• Structure work to deliver stand-alone value
along pre-determined timeboxes (e.g., release
cycles, sprints) without disrupting those
cadences.

• Refine requirements based on iterative
feedback, usability assessments, and human
capabilities and limitations.

• Carefully manage scope by managing
requirements backlog with continuous planning
and prioritization.

• Deliver Minimum Viable Product to users as
soon as possible (e.g., 3-6 months or sooner).

• Account for Human Computer Interaction in
requirements and telemetry planning.

• Plan human systems integration activities by
tailoring SAE6906.

• Ensure early involvement by testers to provide
input to inform test-driven development,
assess testability of requirements, automate
testing to the greatest extent possible, and use
automated tools for traceability.

Software Architecture (Section 4.2)

• Adapting legacy architectures and systems
constrained evolution (closed and proprietary
architectures).

• Finding sufficient software expertise in new
paradigms.

• Understanding Cloud services.
• Setting up continuous integration/continuous

delivery (CI/CD) pipelines.
• Transitioning to a Zero Trust architecture

model.
• Speeding up product deployment.
• Embedded systems, cyber-contested

environments, disconnected operation.
• Scaling size of development organization to

hundreds or thousands of developers.
• Determining desired modularity and open

architecture. Consider Modular Open Systems
Approach design when practicable.

• Follow DoD Enterprise and DevSecOps
model.

• Employ vetted standard CI/CD pipelines.
• Employ microservice architectures in the

context of distributed systems when
organization needs to scale personnel.

• Use vetted containers with a security
monitoring sidecar.

• Employ cyber resiliency countermeasures
such as continuous monitoring, sandboxing,
authentication services, opportunistic
connectivity.

• Follow strangler pattern with legacy application
modernization applications. Incrementally
replace legacy code with new services
employing a facade in front of the refactored
software to prevent disruption to dependent
external systems.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
20

Challenge Best Practices
Design (Section 4.3)

• Adapting to changing technology trends.
• Integrating with future warfighting systems in

unforeseen ways.
• Ensuring software can be tested efficiently.
• Designing Application Programming Interfaces

(APIs) that are both easy to use and easy to
test.

• Capturing experience in the field to understand
operational needs.

• Avoiding design mistakes that open the door to
cyber-attack.

• Ensuring suitable and effective human system
interaction.

• Maintaining control over technical debt.

• Identify potential high-value touch points and
define APIs to enable semantic
interoperability.

• Identify interfaces to external systems and
work with external system POCs.

• Employ Test-Driven Development (TDD) by
developing executable specifications as test
cases prior to implementing APIs.

• Require a Software Bill of Materials.
• Modularize early Minimum Viable

Product/Minimum Viable Capability Release
delivery.

• Design, plan for evolution, iterate over time.
• Design Interfaces and instrumentation to aid

automated testing and gathering of telemetry
data.

• Conduct table-top cyber exercises for early
design feedback.

• Incorporate human-centered design such as
described by ISO 9241-210.

• Design well enough to avoid technical debt
and future rework.

• Simulate the operational environment in
software.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
21

Challenge Best Practices
Coding (Section 4.4)

• Detecting coding errors early before they lead
to vulnerabilities.

• Obtaining high productivity without sacrificing
security, quality, and reliability.

• Choosing the right programming language and
tool stack for development.

• Guarding against supply chain attacks.
• Recording software design decisions so can

be automatically verified for consistency and
completeness.

• Communicating assumptions clearly to
programmers who will need to understand the
code over its lifetime.

• Creating inline and technical design
documentation to support cross-training and
supportability.

• Ensure the team is dedicated (fully allocated).
• Ensure the team is not disrupted within sprints
• Plan for at least one development team to

become the product team (software is never
done, eliminate the shift to operations and
maintenance).

• Adopt secure coding standards and train
programmers to apply them.

• Code APIs to the executable specifications
developed in the TDD process.

• Enforce coding standards through review
aided by static and dynamic analysis tools in
the CI/CD pipeline.

• Use the most type-safe, abstract language
feasible (aids automated checking and human
understanding).

• Employ provenance scanning tools.
• Retain code in a Government-controlled

repository.
• Employ ubiquitous automated unit testing

during coding.
• Release code frequently through CI/CD to

testing, integration, and production
• Ensure Definition of Done includes building the

code necessary to automate testing and
validate all acceptance criteria.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
22

Challenge Best Practices
Testing (Section 4.5)

• Moving at the speed of the development team
to ensure testing does not inhibit value delivery

• Cultural challenges that drive manual testing
requirements

• Measuring delivery of new capability in the
software base.

• Measuring the quality of regression tests.
• Preventing errors introduced as new

capabilities are added.
• Testing for safety, reliability, security.
• Confidence in the coverage of the test suite.

How much is enough?
• Finding computing resources and time to

execute the tests.
• Availability of hardware, personnel, and

equipment.
• Transparency of testing to support

Government test roles, including evaluation of
effectiveness, suitability, survivability, and
Responsible Artificial Intelligence.

• Perform Workload Analysis to determine
potential impacts to safe and effective
performance as capabilities are introduced.

• Availability of user personnel to support
mission-oriented developmental test. Best
Practice: Identify user requirement in User
Agreement or similar documents.

• Map all test procedures to requirements.
• Ensure all stories have testable acceptance

criteria.
• Employ code coverage metrics to assess test

quality.
• Build automated regression and other tests

into the CI/CD pipeline.
• Employ the executable specifications

developed in the TDD process as automated
regression tests.

• Employ scalable Cloud resources to execute
many tests in parallel.

• Provide a range of simulation and test
environments to augment testing on hardware
with lower cost alternatives.

• Synchronize development priorities with
hardware availability.

• Use Cybersecurity T&E Guidebook to develop
security testing (addresses testing for security
challenge).

• Use Scientific Test and Analysis Techniques
(STAT) to measure test coverage.

System Integration and Test (Section 4.6)

• Integrating components and subsystems
produced by different development teams.

• Complexity of interfaces and potential for
misunderstanding, ambiguity, and
miscommunication.

• Time to deal with unforeseen interactions that
surface when combining components into a
system for the first time.

• Minimizing rework that discovery of integration
issues may entail.

• Potential to exceed specified human limits
(e.g., workload, situational awareness, etc.)
leading to increased potential for human
errors.

• Shift integration left as much as possible.
• Plan and design for integration to be

performed incrementally as capabilities evolve.
• Integrate to mature, standardized APIs where

feasible.
• Integrate to stubbed and simulated component

interfaces in advance.
• Ensure components developed by different

teams are loosely coupled (i.e., interact
through simple interfaces characterized by a
small number of well-understood, clearly
documented assumptions).

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
23

Challenge Best Practices
Operations (Section 4.7)

• Deployment of the software into the
operational hardware and environment.

• Training of the operational staff in the use
monitoring and administration of the deployed
system.

• Managing the evolving security threats present
in the operating environment.

• Assessing the availability, reliability, and
usability of the software under operating
conditions.

• Usability under denied, disrupted, intermittent,
limited (D-DIL) connectivity.

• Ensuring that new capabilities align with
operational needs in a timely manner.

• Deploy software through Cloud-based services
• Customer and end user engagement in sprints

(design and demonstrations)
• Provide continuous feedback to the

development team.
• Collect and transmit telemetry to inform

development.
• Employ a continuous Authorization to Operate

(cATO) Layered Approach; swappable
approved layers; continuous monitoring.

• Zero Trust approach, authenticate everything,
encrypt all communication.

4.1 Requirements Best Practices

Requirements should be unambiguous, testable, consistent, and precise so the program will be
able to demonstrate whether a system meets the requirements. In an Agile/DevSecOps
environment, requirements are typically expressed as capabilities, epics, features, and stories.

Modern practice recognizes there is a point of diminishing returns when refining requirements in
advance of system development. This guide advocates initially developing a core set of
requirements that define the MVP or MVCR, then routinely structuring time-boxed and
cadenced release cycles to continuously develop the product. The MVP/MVCR reflects the core
set of mandatory features the software must have to deliver value to operational users so they can
give feedback to help evolve the product. Features of the MVP/MVCR must be balanced against
the complexity or effort to be exerted by the team (i.e., the product must be both minimum and
viable). Feedback from user experience with the software guides future product direction,
informs adaptation, and helps refine requirements to maximize the value of the product. Once the
MVP is defined, the program can begin to deliver working software to the users.

Following are emerging best practices for developing software requirements applicable to DoD:

• Participate in the development of the Operational Sponsor’s CNS or the Software Initial
Capabilities Document (SW-ICD) to get an early understanding of the user’s needs.

• Derive requirements from the CNS or SW-ICD describing the capability and benefit of
having the capability, written from the stakeholder, and in particular the end user’s,
perspective.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
24

• Communicate with stakeholders (primarily customers and end users), building user
stories to capture user input on problems the system is expected to solve and the value
provided by solving those problems.

• Engage developmental test and evaluation (DT&E) and operational test and evaluation
(OT&E) organizations early in the process of developing requirements, and in all
subsequent phases of development.

• Prepare a Product Vision that defines the long-term vision for the system and the goals
and objectives to achieve.

• Develop a high-level, adaptable Product Roadmap that illustrates how the product
team(s) will deliver on that vision.

o The Product Roadmap typically covers a 1-3 year period and focuses on capability
delivery. Epics and features may be defined for the MVP or upcoming release only.

o Stories, tasks, and activities should not be included in a Product Roadmap (this is not
a project schedule or an Integrated Master Schedule).

• Map capabilities, epics, and features on the roadmap back to mission needs.

• Employ automated tools (e.g., Jira, AzureDevOps, ServiceNow) to automate the
Roadmap and Product Backlog, and to maintain traceability among the capabilities, epics,
features, and stories.

• Hold a 1-2 day program increment or release planning event with leadership, user
representatives and product teams to break down the work in the Product Roadmap
targeted for the MVP or upcoming release into epics, features, and/or stories that will
comprise the Product Backlog. This planning event helps ensure the product teams
understand and communicate the needs and requirements.

• Involve users from the beginning while defining the Product Roadmap and Product
Backlog; consider user experience from the beginning, especially in new product or new
capability development.

• Create a clear, concise, traceable, and effective CNS or SW-ICD, along with a Product
Roadmap and Product Backlog.

• Establish a product owner responsible for being the “voice of the customer” with the
authority to prioritize specific capabilities, epics, and features (requirements) targeted
needed for an MVP or MVCR (in accordance with DoDI 5000.87 (2020)).

• Do not wait for full agreement on all requirements before proceeding; begin with a stable
subset of requirements that together provide a useful core capability.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
25

• Create a prototype and conduct demonstrations to confirm or refine agreed-upon
requirements.

• Have developers interact directly with users to better understand their needs to guide the
many micro-decisions that developers make in refining the requirements into design
and code.

• Capture requirements as test cases incorporated into automated test suites as part of a
test-driven development approach.

• Address functional requirements (functions the system performs for the user) and non-
functional requirements (security, reliability, maintainability).

• Track and prioritize requirements (Product Backlog) using automated tools that integrate
with the development pipeline to provide traceability and prioritization and to aid testing.

• Be prepared to adjust requirements and roadmaps as the program gains new insights
regarding feasibility, cost, and value to users.

• Allow early (and continuous) access to features on the operational system so users can
provide valuable feedback to modify and re-prioritize the requirements in the Product
Roadmap and Backlog.

• Understand and begin implementation of the Risk Management Framework (RMF)
workflow. NIST SP 800-53 (2020) defines the RMF as the process for identifying,
implementing, assessing, and managing cybersecurity capabilities and services, expressed
as security controls, and authorizing the operation of information systems (IS) and
platform information technology (PIT) systems. The RMF brings a risk-based approach
to the implementation of cybersecurity, supports cybersecurity integration early and
throughout the system life cycle, promotes reciprocity to the maximum extent possible,
and stresses continuous monitoring.

• Understand the Authorization to Operate (ATO) workflow. The Committee on National
Security Systems (CNSS) (CNSSI 4009 2015) defines an ATO as the official
management decision issued by a designated accrediting authority or principal
accrediting authority to authorize operation of an information system and to explicitly
accept the residual risk to agency operations (including mission, functions, image, or
reputation), agency assets, or individuals.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
26

4.2 Software Architecture Best Practices

It is difficult to make blanket statements about architecture that apply to all types of software.
The Defense Innovation Board study (DIB 2019b) divided software into three broad operational
categories: enterprise systems, business systems, and combat systems. It further subdivided
combat systems into logistics systems, mission systems, and weapon systems.

The report also identified several types of computing platforms on which these operational
functions might be implemented: Cloud computing, client/server computing, desktop/laptop
computing, mobile computing, and embedded computing. Each of these platforms may be
employed alone or in combination as part of any of the operational categories above.

Following are some best practices for tailoring architectural decisions to program needs:

• Use digital models in architecture development to illustrate different models and views.
Models may illustrate software edges, interactions, and operations. Ensure each software
architecture can be implemented in a physical architecture.

• See vetted DoD Enterprise DevSecOps software factories and platforms. Information on
vetted software factories and platforms is available at (DoD Enterprise DevSecOps Portal
2023)(Common Access Card required). As of early 2023 this site maintains a spreadsheet
describing over fifty DevSecOps platforms and software factories listing attributes such
as Name, Location, Software Factory and Platform Mission, and Point of Contact.

• Adopt a Modular Open Systems Approach (MOSA) employing a design strategy that
consists of a technical architecture that uses system interfaces compliant with widely
supported and consensus-based standards (if available and suitable) and supports modules
that are highly cohesive internally but loosely coupled to one another at the system level.

• A program building a distributed system that requires maximum scalability should
consider using microservices. By definition, microservices are independently deployable
and testable without reliance on testing with any other microservices (see also Section 3,
Technology Modernization).

• Consider using enterprise Cloud infrastructure with templates for integrated toolchain to
accelerate setting up automated development pipelines.

• Take advantage of software container technology to automate deployment of software
and minimize manual system administration effort.

• Reuse architectural components such as a service mesh and container sidecar when
developing container-based solutions.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
27

• Consider that modern infrastructure may be relevant even for systems that are not a web
service. For example, embedded systems might take advantage of Cloud-based
infrastructure for simulation and testing.

• Make specialized hardware available remotely as a sharable resource incorporated into
dynamically configured Cloud-based test and development platforms.

• Use an architecture that divides the work among teams who can work independently. An
ideal separation minimizes the need for communication among teams, which speeds
development and leads to more robust systems.

o Stable interfaces and simple well-documented APIs are characteristic of architectures
that minimize communication needs.

o Unstable interfaces with complex and poorly documented APIs create confusion, and
resolving the issues requires a great amount of communication among teams.

• Consider Software as a Service (SaaS) offerings to replace the functions of legacy
systems that are in sunset or no longer supported.

• Upgrade the security architecture to account for modern embedded software that has
evolved from simple embedded controllers to complex network entities with operating
systems, network stacks, and programmability – and the vulnerabilities and exposures
that come with that added complexity.

• Apply a ZT approach to architecture and design in accordance with NIST 800-207.

• Use the ecosystem of high-quality open source software (OSS) to save time and
development effort. See answers to frequently asked questions in the “DoD Open Source
Software FAQ” (DoD CIO 2021).

• Maintain awareness of supply chain risks and adopt countermeasures to mitigate those
risks to acceptable levels.

Software architecture lays the foundation for system and product development; therefore, the
role of architect is a key one. To make correct architectural decisions and execute software
development successfully, the architect must be able to staff the effort with qualified people in
key positions in a timely manner. The organization will be able to recruit, hire, and establish
clearances more successfully if it can attract the best talent and streamline hiring and onboarding
processes.

4.3 Design Best Practices

Where software architecture activity deals with overarching decisions that apply to the system as
a whole, design activity addresses further refinement of the system components and relationships
among them. Following are examples of design best practices:

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
28

• Maintain awareness of and control over dependencies among software components or
modules. Ensure module interfaces are available to the Government.

• Make explicit in the design which modules require the presence of other modules in order
to provide a function. Awareness of these dependencies allows the software engineer to
infer (1) constraints on the order in which capabilities can be delivered, (2) usable subsets
of the system that may be composed from those modules, and (3) what modules can be
reused independently in other contexts.

• Require a Software Bill of Materials (SBOM), a formal record containing the details and
supply chain relationships of various components used in building software. Executive
Order (EO) 14028, “Improving the Nation’s Cybersecurity” (2021), defines an SBOM
and identifies the value proposition in paragraph 10(j). In addition, paragraph 4(f) defines
the minimum elements of the SBOM and paragraph 4(e)(vii) provides guidance on
providing a purchaser SBOM for each product. The National Telecommunications and
Information Administration (NTIA), Department of Commerce, provides a
comprehensive collection of materials on the SBOM on its website
(https://ntia.gov/page/software-bill-materials) (NTIA SBOM 2021).

• Employ automated tools using formalisms such as the Unified Modeling Language
(UML) or System Modeling Language (SysML) to capture, analyze, and communicate
how software modules interact.

The design points stated above concern the relationships between modules at a high level. A
finer level of detail would include specifications for all the individual API calls. Such
specifications can easily range into the hundreds, even thousands, of elements considering the
specification of a function’s arguments, return values, and all the potential errors and exceptions
that may be raised and under what conditions.

4.4 Coding Best Practices

The chief challenge of the coding phase is to produce working code within constraints of the
architecture, software design, and user requirements in a timely manner.

Designs evolve in response to what developers learn by refining them into code. They learn even
more when the code is released into production. This feedback and iteration among design,
coding, and production is inevitable. Modern approaches recognize this reality and help software
developers balance the upfront effort devoted to design specifications with the need to generate
working code and to get feedback.

https://ntia.gov/page/software-bill-materials

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
29

Following are examples of coding best practices:

• Proceed with coding after availability of a sufficiently detailed design. Do not wait for a
fully detailed design. Further develop and refine design artifacts as coding and learning
proceed. A sufficiently detailed design is defined as one that supports: (1) the design,
code, test, and delivery of an MVP or MVCR to proceed collaboratively without
confusion and conflict; (2) a shared understanding of responsibilities and authorities for
further refinement to the design; and (3) a clarity regarding which decisions are fixed and
which are flexible.

• Generate API specifications for specific software components and sub-components as
part of the coding and design process. Many (if not all) modern languages have
corresponding utilities for extracting API documentation from comments embedded in
the code. These utilities generate API documentation as hyperlinked, cross-referenced,
fully searchable websites; e.g., Javadoc, Doxygen, Hdoc, mkdocs, jsDoc, YARD,
sandcastle.

• Annotate code with concise natural language comments that can be extracted by
automated tools to generate web pages, diagrams, and searchable databases documenting
those interfaces. Provide inline documentation for program logic, variable names, etc., to
make the software easier to maintain.

• Have the development team review the generated documentation, especially those who
rely on those program interfaces to build their own components.

• Employ digital models and automated tools to update interface documentation,
maintaining constancy as the design and code evolve.

Coding is also a critical touchpoint for building in security assurances by adopting standards,
training programmers, and employing automated analysis tools.

• Adopt secure coding standards and provide a mechanism to enforce them. Intellipedia
(Intellipedia Secure Coding Guidelines 2022) has compiled references for secure coding
standards (DoD CAC Required). A more broadly accessible set of language specific
coding standards is available from SEI (SEI CERT Coding Standards 2020).

• Train programmers in secure coding practices.

• Employ static analysis tools and dynamic analysis tools into the CI/CD pipeline as a
means of enforcing secure coding standards and training programmers to write more
secure code.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
30

Finally, developers and infrastructure support groups should configure and use automated
tools to do version control, gain immediate feedback from testing and quality gates, and
perform rollbacks quickly and efficiently when needed.

• Conduct integrated testing (contractor and Government development test (DT)
operational test (OT)) at the speed of the development team (as early as possible and in
an ongoing rhythm) to collect data and avoid large tests at the end of development.

• Retain code in a U.S. Government-managed repository system.

• Avoid branching the development tree for prolonged periods as this compounds
integration costs. Strive to merge changes into the main development trunk daily.

• Ensure the code repository commit triggers automated security scans and regression tests,
and provides timely feedback to the developer on the results.

4.5 Code Development and Test Best Practices

Director, Operational Test and Evaluation (DOT&E) and OUSD(R&E) Developmental Test,
Evaluation, and Assessments (DTE&A) are responsible for test and evaluation (T&E) policy and
guidance and are in the process of publishing the following T&E guidance documents:

• DoDI 5000.89 Test and Evaluation, Section 4.5 T&E for Software Acquisition Pathway

• T&E Enterprise Guidebook, Chapter 5 Software Acquisition

• T&E Enterprise Guidebook – Software T&E DoD Manual (forthcoming)

• T&E Enterprise Guidebook – Cyber DoD Manual (forthcoming)

• Software T&E Companion Guide – Agile/DevSecOps (forthcoming)

• Cyber T&E Companion Guide (forthcoming)

These documents detail additional expectations with respect to DTE&A and DOT&E
organizations.

The following paragraphs discuss incremental testing by the software development team,
supported by the software test team. Software engineers should work with software testers and
refer to the above documents for additional testing guidance.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
31

Testing should guide development, measure progress, and ensure product quality while also
moving at the speed of the Agile system. Following are examples of code development and test
best practices:

• Capture testing requirements upfront and build them into Acceptance Criteria (which
applies to a specific story) and Definition of Done (which applies to all stories).

• Invite independent Government testers to participate or observe integration testing for
early evaluation, as appropriate.

• Begin testing activities early and run them continuously, ideally with the help of DT and
OT stakeholders so they can help shape these practices to be maximally effective and
avoid downstream effort and calendar time as much as possible.

• Measure the growth of a new capability in the software base in terms of prioritized
features traceable to the requirements agreed upon for the system.

• Use Test-Driven Development (TDD) and Behavior-Driven Development (BDD). TDD
and BDD are two recognized Agile techniques teams can use to write executable
specifications as test cases or automated test script prior to coding, and that developers
can use to write the code to satisfy the test cases.

• Employ automated testing for both functional testing (linked to the user stories and
functional requirements) and for non-functional testing (linked to cybersecurity software
assurance, safety, and resilience).

• Curate and maintain a suite of regression tests, which evolve over the lifetime of the
system. Regression tests enable incremental development by ensuring that developers do
not introduce new errors as they add new capabilities to the code.

• Testing should cover both:

o Functional Testing. Testing of those features that correspond to the capabilities the
users want, and

o Non-functional Testing. Testing aimed at measuring global characteristics: safety,
security, reliability, maintainability, performance, and resilience.

• Manage, track, and prioritize software defects until they are resolved, tested, and
released.

• Integrate automated software analysis tools into the CI/CD pipeline to assist testing for
safety, reliability, and security.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
32

• Collect quantitative metrics to assess the test suite quality and completeness of coverage
using Scientific Test and Analysis Techniques (STAT).

• Use the instrumentation available (e.g., code coverage tools, test case to requirement
tracking) in modern development environments to collect metrics to assess the quality of
test suites.

• Employ a range of test platforms to provide the flexibility to trade off fidelity for lower
cost, faster cycle times, and greater scale. For example, in avionics systems the highest
fidelity/most expensive platform is flight testing on the physical aircraft. Less fidelity, but
at lower cost, would be testing against a software simulation of the aircraft’s physical
responses and simulated interfaces to the controls and sensors on the aircraft. Having a
range of testing platforms helps the program optimize the overall testing effort.

• Programs should seek to automate testing to the greatest extent possible. This will require
developers to build automated tests during coding, but it also will require test engineers
who are well trained on automated testing practices; including how to interpret results of
automated testing, how to identify automated testing gaps, and avoiding manual testing
that duplicates automated test results/outcomes.

• Analyze test data and generate metrics to inform decisions that keep the program on
track. Take corrective action in response to undesired trends and variance from control
thresholds.

• Synchronize development and test priorities with hardware availability. In many DoD
projects, software development testing will depend on the timely delivery of hardware
that is still in the process of design and development. Consider the risks inherent in
timing of hardware availability and consider mitigations to minimize impact on software
development and testing.

4.6 System Integration and Test Best Practices

This section focuses on integration and component testing by the software development team,
supported by the key stakeholders/users. Integration testing also takes place at higher levels of
subsystem, system, and system of systems, which the software engineers should track. Testing at
these levels may be performed by independent Government testers.

System integration and testing should happen continuously through the SDLC as software is
made available. See the DOT&E and OUSD(R&E) DTE&A T&E policy and guidance
documents outlined in section 4.5 for additional testing guidance. Following is a partial list of
system integration and test best practices:

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
33

• Integrate new components into the system in small increments as they become available.

• Integrate to a surrogate simulation or stub out the component if a dependency is
unavailable.

• Prototype integration of new components to identify issues and resolve them before they
become critical.

• Maintain open channels of communication between development teams working in
different locations.

• Avoid trying to integrate too many components at once, especially on compressed
schedules.

• Take advantage of regression testing at the functional level to shake out integration
issues. Functional level testing focuses on the end user interaction and interactions with
external systems.

4.7 Operations Best Practices

 Release on Demand

Once a solution for a capability has been developed and has passed its testing, validation, and
applicable certification gates, it can be made available to the user; however, these new releases
should include technical measures to mitigate risks from potential defects since the project may
have minimal experience running the new release in the user’s context.

• Dark Launches provide the ability to deploy to a production environment without
releasing the functionality to the users.

• Feature Toggles facilitate Dark Launches by implementing toggles in the code that enable
switching between old and new functionality.

• Canary Releases provide a mechanism for releasing the solution to a specific user
segment to enable measurement of results before expanding and releasing to more users.

• Decoupled Release Elements allow releases of some capabilities to be delivered on a
different schedule or frequency from others, depending on need. For example, releases
that fix security flaws may be quite urgent, while routine changes resulting from evolving
office functions may be released less frequently.

It is important for new Agile/DevSecOps teams to release in short, routine cadences that allow
them to practice and improve the flow of value delivery. It is also important that operations do

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
34

not unnecessarily inhibit the delivery of value or delay the learning/feedback loops necessary to
guide future development effort. Therefore, it is critical that the program not unintentionally
translate “release on demand” to releasing over long-term (Waterfall) release cycles. If concerns
or challenges inhibit providing new value to users, the team should identify and eliminate them
to the greatest extent possible. Independent release cycles allow developers to achieve separate
flows or “value streamlets,” delivering at their own needs and pace. Identifying streamlets is a
critical aspect of release on demand.

 Automated Deployment

The operational environment is where the program is first able to validate that the delivered
product provides valuable capability by fulfilling the operational need of the users. Those
planning and assessing deployment into operations should consider:

• Automating deployment of the software and systems into the operational hardware and
environment.

• Making canary releases (see 4.7.1) of new capability that can be rolled back easily if
flawed or unsatisfactory.

• Training the operational staff in the use of software tools to handle monitoring and
administration of the deployed system; including the software install and rollback.

• Giving attention to managing the evolving security threats present in the operating
environment. These may differ from threats present in the development environment.

• Collecting metrics to help assess the availability, reliability, survivability/resiliency, and
usability of the system under operating conditions.

• Assessing usability under disconnected and intermittent connectivity situations that can
occur in operations.

• Deployment to pre-production or staging environment to support Government DT and
early OT.

4.8 Agile Development Maturity

Organizations vary widely in their ability to execute an Agile/DevSecOps approach to software
development. Those that have developed disciplined processes with a high degree of test
automation, quality checks, and trained personnel, and that have refined a continuous delivery
pipeline over several years on multiple projects, will have a far easier time than organizations
just starting this transition.

4. Challenges and Best Practices

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
35

Rather than developing a maturity model, DoD CIO recommends developing a set of
capabilities. They have prepared a playbook that elaborates on specific capabilities needed to put
in place effective Agile/DevSecOps processes (DOD DSO Playbook 2021).

4.9 Summary

DoD established traditional software development practices to deliver systems that meet
warfighter needs and are safe, secure, and reliable. The Department’s evolution to more Agile,
continuous, and iterative processes helps achieve those benefits and maximize the value
delivered by readily adapting to new learning, evolving needs, and adversary actions. The
development team should manage requirements, architecture decisions, design coding,
documentation, testing, and deployment through systematic processes that they refine continually
to achieve speed of delivery and high quality of result.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
36

5 Software Metrics Use and Lessons Learned

• Programs that adequately track and monitor software development with metrics have
been more successful at lowering program risk.

• Objective metrics provide quantitative information teams can use to identify and
understand trends, promoting continuous improvement.

• Without objective metrics, assessing an effort or development may be open to biased
interpretation, which could make the assessment inaccurate.

• Programs should establish consistent metrics for the life of the project.

Metrics can yield useful insight regarding program health and can prompt decision makers at
various levels to take corrective action as needed. This section discusses how to use metrics to
guide decision making by grounding those decisions in objective data.

This section discusses metrics as they apply to the Software Acquisition pathway outlined in
DoDI 5000.87, Operation of the Software Acquisition Pathway (2020); Agile/DevSecOps
processes; and software factories. It suggests metrics to inform decision makers at the team,
product, and enterprise levels. It includes questions to consider when selecting metrics and
presents case studies from OUSD(R&E) program assessments to illustrate the use of metrics.

5.1 Distinction between Waterfall and Agile/DevSecOps Metrics

In traditional Waterfall approaches, requirements are fixed and used to estimate time and cost.
Waterfall emphasizes metrics that validate these estimates.

Agile/DevSecOps approaches attempt to fix time and cost rather than requirements. Software
teams fix the cost and releases or iterations along “timeboxes” (windows of time) and then
estimate the amount of value (requirements or stories) they can deliver within those timeboxes.
Agile/DevSecOps metrics focus on team performance, the efficiency of the team’s value
delivery, and quality. Therefore, the Agile/DevSecOps approach results in a different set of
metrics from Waterfall because the metrics are used for a different purpose. The metrics must
support decision makers and help the team to improve.

OUSD(R&E) recommends Agile/DevSecOps metrics using as much automation as possible. The
DAU website on Metrics and Reporting provides DoD guidance including the following:

Each program will develop and track a set of metrics to assess and manage the
performance, progress, speed, cybersecurity, and quality of the software
development, its development teams, and ability to meet users’ needs. Metrics

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
37

collection will leverage automated tools to the maximum extent practicable. The
program will continue to update its cost estimates and cost and software data
reporting from the planning phase throughout the execution phase. (DAU Metrics
and Reporting 2022)

5.2 Metrics Inform Decisions

Metrics should inform decisions on many levels and throughout the life of the project:

The goal of generating metrics is to provide leadership, the Product Owner, team
members, and other key stakeholders information and insights into the development
effort to guide technical/programmatic decision-making, continuous improvement
efforts, and remediation of blockers/impediments. Software teams should regularly
review metrics as part of their sprint/release retrospectives and leverage metrics
both for continuous improvement and to plan future iterations. (DAU Metrics and
Reporting 2022)

In its Agile Assessment Guide: Best Practices for Agile Adoption and Implementation, the
Government Accountability Office (GAO) emphasized the importance of metrics for routine
management as well as enterprise-level decisions:

Project and technical managers need objective information to make day-to-day
decisions, identify project issues, correct existing problems, and manage
prospective risks. This same information must also provide a basis for evaluating
organizational and enterprise-level performance and assessing the impact of policy
and investment decisions. (GAO 2020)

 Decision Makers

Decisions occur at the team, product, and enterprise level. Each level has its own role,
accountability, and authority and is responsible for a range of decisions. The varying scope
requires varying metrics that result in the appropriate data to inform each type of decision.

• Team (Technical Focus). The Chief Engineer, system architect, software engineers, and
supporting roles (e.g., information technology, configuration management, test) work
with the software environment daily to make many detailed low-level decisions at a rapid
pace. They coordinate among themselves to allocate design, development, and testing
tasks with an immediate impact measured in hours and days.

• Product (Tactical Focus). The product owner acts as the voice of the customer to
prioritize work for the team and guide product direction. The product owner owns the
Product Vision, Roadmap, and Backlog. The product owner ensures that the requirements
reflect the needs and priorities of the user community and align to the mission objectives.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
38

The Program Manager manages contracts, provides servant leadership to ensure the
appropriate Key System Attributes (KSAs) and tools for the team, and tracks execution
and delivery of product.

• Enterprise (Strategic Focus). Executive leaders (e.g., Milestone Decision Authority
(MDA) and Program Sponsor) and those with program oversight functions must track the
performance either individually or in the larger context of a portfolio of programs. They
make investment decisions that direct large blocks of resources over single- or multi-year
horizons. They require accurate technical assessments of program risk and deployment
value. They act as Servant Leaders that help the team remove blockers that inhibit
success in a timely manner.

 Performance Insight

Agile/DevSecOps teams routinely use performance data to guide continuous improvement
efforts. Since most teams generate working product (value) routinely over short release cycles
(e.g., 3-6 months), they generate data to assess performance. These objective metrics provide
insight into the current state of a program’s performance and can be extrapolated to future
performance (e.g., burndown charts).

For example, metrics data collected over time can show how efficiently the team is building
(cycle time) and how fast they are delivering value to the customer (lead time for change).

Claim. Programs that track and continuously monitor software metrics are typically the most
successful in delivering timely value to the warfighter.

 Technical Debt

Technical debt, an important metric in the execution and life cycle of a program, is additional
work that needs to be completed arising from decisions made during development and
sustainment. Technical debt may accumulate because of a combination of architecture
definition/modification, software design definition/modification, and/or a growing backlog of
software defects and/or requested features. If left unchecked, mounting technical debt can
overwhelm a program with unplanned work to address a variety of issues, e.g., poor system
performance, stability, and maintainability.

Claim. Addressing an increasing technical debt workload can have major impacts on
productivity and overall team velocity, potentially leading to cost and schedule impacts.

During sprint planning sessions, reserve buffer in a sprint backlog; plan fewer items than the
average sprint velocity, and absorb new user stories addressing recidivism or technical debt. As
executed on several Major Defense Acquisition Programs (MDAPs) and consistent with industry
best practice, this buffer should not be more than 10 to 20 percent of the team’s velocity.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
39

5.3 Identifying and Selecting Software Metrics

Waterfall development tends to fix requirements (scope) and then estimate time and cost,
resulting in metrics and reporting to validate time and cost; e.g., earned value management. The
Agile approach flips the so-called Iron Triangle by imposing fixed costs (based on the cost
structure of dedicated teams) and time (through regular release cycles), then estimates scope (the
amount of value the team can deliver). This approach shifts the focus of metrics and reporting to
value delivery and team performance; therefore, Agile programs will leverage different metrics
than Waterfall programs. Leadership and teams must use and understand these new metrics in
addition to the old, to continuously improve program outcomes and results.

A software metric can be defined as a standard of measure to which a software system or process
possesses an attribute. Even if a metric is not a measurement (metrics are functions, while
measurements are the value obtained by the application of metrics), often the two terms are used
as synonyms.

Program leaders and teams should use metrics to guide continuous improvement activities,
discussed during sprint retrospectives and program reviews.

 Metrics to Support Programmatic Decisions

Metrics are useful because they inform program decisions such as the following:

• Should the program be continued or canceled to free up resources for other initiatives?

• Does the value delivered satisfy the stakeholders’ needs?

• Is new capability being delivered fast enough for programs to validate its value to the
stakeholders?

• Is the system proving to be resilient and robust in practice?

• Are new capabilities flowing through the pipeline at an acceptable rate?

• Are requested capabilities delivered into production within acceptable time frames?

• Is the system meeting its cyber resilience requirements?

• Is the system ready for deployment to operational users?

• Is the system effective, suitable, and survivable in supporting the operational mission?

• What capabilities should we prioritize for delivery and deployment?

 Questions to Consider in Selecting Metrics

Questions to consider when identifying and selecting metrics include:

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
40

• Who are the decision makers, what specific decisions do they need to make, and what
level of detail and data do they need to inform their decisions?

• What are the program goals? How do they influence the metrics needed; e.g., transition to
DevSecOps, migration to a Cloud-native application architecture, or reduction in fielded
technical debt? What software metrics will provide the insight needed to manage to these
goals?

• What are the program deliverables? What components of the deliverables are the
stakeholders vested or interested in; e.g., capability, feature, function, or bug correction?
What data and metrics are needed to track progress against development of deliverables
and at what level?

• What software development risks, watch items, or concerns has the program identified
that need to be supported by data collection and metrics; e.g., transition to DevSecOps,
ability to meet planned staffing ramp rate, or dependency (assumption) on high velocity
or productivity?

 Qualities of a Useful Software Metric

To be useful, a software metric must be consistent, actionable1, discoverable, consequential, and
repeatable. Metrics will help to gauge progress toward a goal but should not be confused with the
actual goal (e.g., a SMART goal – specific, measurable, achievable, relevant, and time-bound).

• Consistent and Actionable. The metric should be clearly defined, including what pipeline
process it addresses and how to calculate it.

o OUSD(R&E) Lesson Learned. If a metric triggers debate about what it means or what
action to take with subsequent analyses, then that metric is of questionable value.

• Discoverable. The metric should be easily produced from naturally occurring data, i.e., a
by-product of engineering or management activities.

o OUSD(R&E) Lesson Learned. The metric should not require hours of work or a team
of individuals to compute reliably.

• Consequential. The metric must connect to a program, project, or software development
outcome.

• Repeatable. The metric can be produced over the software development life cycle and
aggregated across projects to support analyses like benchmarking.

1 An example of an inactionable metric could be the number of defects. While it is important to track the number of
defects, this metric alone does not provide any actionable insights. To make this metric actionable, it would be
necessary to analyze the characteristics of the defect, such as severity, when the defect was discovered, when it was
fixed, where it was found, and its root cause. This information can then be used to assess system health, forecast
maturity, target training, and improve the development pipeline.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
41

Teams should address foundational questions such as the following when assessing the quality
and source of software metrics:

• What is the program’s software development engagement strategy? How involved will
the stakeholders, including the Program Executive Officer or System Program Office, be
with the software development contractor? How much control and involvement in the
software development decision process will there be by the stakeholders? Who is in the
role of the Product Owner, and is this a joint role? Who owns and is responsible for the
technical baseline?

• Who owns and is responsible for the software factory? (DSB 2018) Is the software
development contractor or staff using a software factory or tooling that enables automatic
capture and generation of dashboards and reports, or does the software factory provide
the possibility of self-service or direct access to such data?

• Does the software contractor(s) or subcontractor(s) have experience and demonstrated
success with the software development methodology, software factory tool sets,
architecture, and technologies that will be used?

5.4 Software Metrics and Reporting

An enterprise or program will tailor the measures it needs to implement and collect based on its
information needs and objectives. Programs should expand on the minimum set of metrics as
needed, considering metrics to measure progress.

Table 5-1 compares metrics covered by this OUSD(R&E) guide and other DoD and industry
metrics guides ((OUSD(A&S) 2020); (PSM 2022); (DORA 2022)). The sections following the
table further elaborate on the OUSD(R&E) metrics.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
42

Table 5-1. Sample Metrics Mapped to Purpose

OUSD(A&S) AAF
Defined Metric Purpose

OUSD(A&S) AAF
Program Management Metrics

OUSD(R&E)
SWE Guide

PSM CID Measurement
Framework DORA

Process Efficiency
Process Efficiency Story Points
Process Efficiency Velocity Team Velocity Team Velocity
Process Efficiency Velocity Variance
Process Efficiency Story Throughput
Process Efficiency Cycle (Resolution) Time Cycle Time Cycle Time / Lead Time
Process Efficiency Cumulative Flow Diagram Cumulative Flow Cumulative Flow
Process Efficiency Story Completion Rate
Process Efficiency Sprint Burndown Chart Sprint or

Release
Burndown

Burndown

Process Efficiency Sprint Goal Success Rate
Process Efficiency Release Burnup
Process Efficiency Number / Percent of Stories Blocked
Process Efficiency Time Blocked and Time Blocked per Story
Process Efficiency Lead Time Lead Time Cycle Time / Lead Time
Process Efficiency Lead Time for Change Lead Time to

Change (LTR)
Process Efficiency Staff Experience
Process Efficiency Team Turnover Rates

Program Turnover Rates

Process Efficiency Reuse of Artifacts
Process Efficiency Backlog Readiness
Process Efficiency Defect Resolution

Software Quality
Software Quality Acceptance Rate
Software Quality Recidivism Rate Recidivism Rework Defects

Rework Hours
Rework Stories

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
43

OUSD(A&S) AAF
Defined Metric Purpose

OUSD(A&S) AAF
Program Management Metrics

OUSD(R&E)
SWE Guide

PSM CID Measurement
Framework DORA

Software Quality Defect Count by Story Defect Trends Defect Detection
Software Quality Change Fail Rate Change Failure Rate Change Failure

Rate (CFR)
Software Quality Mean Time to Recover/Restore

(MTTR)
 Mean Time to Restore

(MTTR) / Mean Time to
Detect (MTTD)

Mean Time to
Recovery (MTTR)

Software Quality Escaped Defects
Software Quality Code Coverage Rate
Software Quality Automated Test Coverage Test Coverage Automated Test

Coverage

Software Quality Percentage of Code Base
Available for Screening
Percentage of Code
Requiring Binary Analysis
(no source code
available)

Software Quality Percentage of Code Base
Screened for
Vulnerabilities

Software Quality Percentage of Code
Requiring Binary Analysis
(no source code
available)

Software Quality Release/Deployment
Failure Rate

Software Quality Cyclomatic
Complexity

Software Development Progress
Software Development
Progress

Release/Deployment Frequency Release (or Deployment)
Frequency

Deployment
Frequency

Software Development
Progress

Time Between Releases /
Mean Time Between Releases

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
44

OUSD(A&S) AAF
Defined Metric Purpose

OUSD(A&S) AAF
Program Management Metrics

OUSD(R&E)
SWE Guide

PSM CID Measurement
Framework DORA

Software Development
Progress

Progress against Roadmap

Software Development
Progress

Achievement Date of MVP / MVCR,
Future Release Cadence

Software Development
Progress

 Feature or Capability
Backlog
Burndown of Technical
Debt Backlog Items

Cybersecurity
Cybersecurity Intrusion Attempts
Cybersecurity Security Incident Rate
Cybersecurity Mean Time to Detect (MTTD) Mean Time to Restore

(MTTR) / Mean Time to
Detect (MTTD)

Cybersecurity Mean Time to Remediate (MTTR)
Cybersecurity Common Vulnerabilities

Enumeration (CVEs)
Common Weaknesses
and Exposures (CWEs)
CVEs/CWEs
Detected/Resolved
Size of Attack Surface

Benchmarking and Parametric Analysis
Benchmarking and
Parametric Analysis

 Size, Schedule,
Staffing, Effort,
Defects

Committed vs Completed,
Defect Resolution

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
45

PSM (2022) provides additional definition and application of the defined metrics and measures:

This guidance is intended to be used by team, program, and enterprise personnel
who are implementing CID [continuous iterative development] approaches, as a
reference for common, practical measures that can be used. The measures a
program or enterprise chooses to implement and collect will be tailored based on
alignment with its information needs and objectives, so they may differ from those
described here. The measures presented are intended to be tailored and adapted to
the development approach and environment. (PSM 2022)

A team at Google conducted research addressing the idea of optimizing software delivery
performance. The results of this research are the DevOps Research and Assessment (DORA)
metrics. DORA limited the metrics list to the four metrics identified by their research that are
key DevSecOps indicators of software development lifecycle performance. The Office of the
Under Secretary of Defense for Acquisition and Sustainment (OUSD(A&S)) is taking advantage
of this research to assess AAF effectivity.

Sections 5.5–5.11 present commonly used metrics by management activity (Process Efficiency;
Technical Performance and Mission; Software Quality; Software Productivity; Continuous
Integration, Test and Release, and Operations; and Benchmarking and Parametric Analysis).

Programs are encouraged to draw not only on this guide but on referenced sources and their own
experience to select the most effective metrics to help them deliver software-enabled warfighting
capability. The DAU AAF website provides additional definitions and application of the AAF
defined metrics and measures. As introduced,

“The goal of generating metrics is to provide leadership, the product owner, team
members, and other key stakeholders information and insights into the development
effort to guide technical/programmatic decision-making, continuous improvement
efforts, and remediation of blockers/impediments. Software teams should regularly
review metrics as part of their sprint/release retrospectives and leverage metrics
both for continuous improvement and to plan future iterations. Programs should
have the ability to expand on the minimum set of metrics as needed, considering
metrics to measure progress …” (DAU Metrics and Reporting 2022)

5.5 Process Efficiency Metrics

 Team Velocity (Team Measure)

Team Velocity is a measure of team performance and the amount of work completed in an
iteration, typically a count of completed story points (measures of complexity for a story) or

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
46

equivalent. Velocity calculations can be used to estimate the amount of work that a team will be
able to accomplish in future iterations and to estimate when they will complete planned
deliveries.

The Team Velocity metric can help answer the following questions:

• Is the team performing as expected?

• Does the team consistently meet the anticipated velocity?

• How much work can be accomplished by the team in a future iteration?

OUSD(R&E) Case Study 1. In an actual MDAP, the Team Velocity (Figure 5-1) remained
relatively consistent through the period measured. Velocity dropped during Iterations 6-8
because of team members taking vacation just before, during, and just after school start.
Iterations 9-12 saw increased story points completed related to increased defect resolution
activity that occurred from systems testing activities post iteration 8.

Source: OUSD(R&E) Software Team

Figure 5-1. Team Velocity

By measuring Team Velocity, the program can:

• Set better delivery expectations and realistic sprint forecasts.

• Understand if the team is blocked (noted by falling velocity).

• Spot unforeseen challenges that were not accounted for during sprint planning.

• Investigate a process change result (noted by decreased, stable, or increased velocity).

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
47

Volatility in Team Velocity could indicate a process or processes are not working and need to be
investigated.

Each team’s Velocity metric is unique and should not be used to compare Team A with Team B
in terms of performance or productivity. Each team has a specific estimation culture; for
example, they may interpret story points differently. The goal is to optimize each team’s work
processes to ensure consistent performance over time.

 Lead Time, Cycle Time, and Lead Time for Change (Team, Product, or Enterprise
Measure)

 Lead Time, Cycle Time, and Lead Time for Change are all used to evaluate efficiency in
delivering value to the user and as predictors for estimating future work. Cycle Time and Lead
Time for Change are both components of Lead Time. The differences are in when start times are
measured (PSM 2022).

Lead Time measures the time from when a customer makes a request to when the team delivers
the working product to the user. Lead Time includes up-front activities such as identifying
backlog, prioritizing, planning, analyzing requirements, and design. Lead Time can be heavily
influenced by the value and complexity of the work. For example, the product owner may
deprioritize a user request because it is low value and high complexity (hard to deliver).

Lead Time can help answer the following question:

• How long does it take to deploy an identified feature/capability once a request is
submitted?

Cycle Time and Lead Time for Change both look at different aspects of delivery.

Cycle Time is the elapsed time from when the team begins development work until the work is
completed. This measures the efficiency of the team’s value delivery. It does not include the up-
front effort needed to define and prepare the work to be implemented (e.g., backlog review and
prioritization).

Lead Time for Change provides the elapsed time between when the work is ready for release and
when it is actually released to the customer or end user. This metric shows how efficient the
program is at releasing new value to customers or end users.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
48

These two metrics answer two important questions:

• Cycle Time answers the question: Once development starts, how long does it take to get
the code ready for release?

• Lead Time for Change answers the question: Now that we have code ready for release,
how long will it take us to get it in use by the customer?

 Cumulative Flow and Throughput (Team, Product, or Enterprise Measure)

Cumulative Flow (whose first derivative is Throughput) indicates the total value-added work
output by the software team. It is typically represented by the units of work (e.g., tickets or
issues) the team has completed over intervals of time. The Cumulative Flow metric needs to be
aligned with current business goals. For example, if the goal is to release new bug-free modules
in this sprint, one should look for a large fraction of defect tickets being resolved.

Cumulative Flow can help answer the following questions:

• Is the flow of work moving forward through the value stream (through the process
workflow states)?

• Is the throughput of work predictable?

• Are there queues or delays in process workflows that prevent optimizing throughput?

OUSD(R&E) Case Study 2. In an actual MDAP, early work item throughput was well below the
ideal or planned throughput to complete all work items for the release (Figure 5-2). This low
result was due to slower-than-expected personnel clearance processing, delaying availability of
planned developer resources. The backlog also increased because of additional work items
(capability and functionality), increasing work items by 18 percent over the initial plan. As the
personnel resources became available, the pace of work item transition to Done increased and
work in progress (WiP) became relatively consistent. Starting at iteration 18, WiP started to rise
rapidly and Done flattened out, reducing throughput. This change was caused by hardware
availability issues, which prevented work transition to Done. The combination of the very slow
start, the additions to backlog, and the late hardware issues negatively affected throughput,
preventing the program from completing all the planned work on time.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
49

Source: OUSD(R&E) Software Team

Figure 5-2. Cumulative Flow Diagram

Cumulative Flow/Throughput terminology:

• Throughput is the number of Work Items completed per unit of time. It corresponds to
the slope (rise over run) of the cumulative Done line.

• Done is work that has completed all development, integration, test, and other transition
workflow states.

• Work in Progress (WiP) is work that has started development activity but has not
completed the final workflow state (Done, for purpose of the Cumulative Flow Diagram).

• Backlog captures user needs in prioritized lists, and includes new/modified
capabilities/features, defect fixes, infrastructure changes, or other activities that a team
may deliver to achieve a specific outcome.

If Throughput declines, this could indicate the team is:

• Blocked somewhere in the process or has encountered a bottleneck(s) preventing
consistent throughput and delivery.

• Overloaded, if not meeting throughput targets. Ask the following questions:

o Is WiP a focused, singular problem?
o Are WiP limits in place?

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
50

o Have processes become inefficient or a bottleneck appeared?

OUSD(R&E) Lesson Learned. Workflow should be balanced, with entry into WiP balanced with
departures or completion of work.

 Sprint or Release Burndown (Team, Product, or Enterprise Measure)

Sprint or Release Burndown metrics are used to monitor completed work items (e.g., stories,
features, capabilities) versus planned work items for an iteration (sprint), release, or capability.
Work items may include design, code, test, and all supporting activities (e.g., requirements
development, configuration management, quality engineering). Progress toward completing
planned work is depicted graphically to provide an indicator of the likelihood of meeting planned
goals (PSM 2022).

The goal of the Scrum/Team is to consistently deliver all work, according to the sprint forecast.
The Release Burndown metric can help answer the following questions:

• What is the status of the iteration, release, or capability?

• Will all the remaining committed work be completed as planned?

• What are the features/capabilities at risk of not being completed as scheduled?

• What are the trends in execution relative to plan?

OUSD(R&E) Case Study 3. In an actual MDAP, the Release Burndown chart (Figure 5-3) shows
that the team was unable to complete all planned stories (~38 stories unfinished or 21%
variance). This condition met the criteria for further review. Review of this and the previous
release iterations revealed that the team was consistently being asked to deliver too much work.
Additional permanent resources were added to the team, which eventually allowed them to
consistently finish planned work while addressing the backlog.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
51

Source: OUSD(R&E) Software Team

Figure 5-3. Release/Version Burndown – Plan vs. Actual

Look for a gradual reduction (consistent/smooth glide slope) in “remaining values” rather than a
dramatic drop as the latter will indicate that the work was not assigned in such a manner or
broken down into granular pieces.

A team’s burndown is rarely perfectly smooth (as represented by the ideal line in Figure 5-3).
It can vary for several reasons, including inaccurate estimates or changed scope; however,
consistently missed deadlines or unfinished work at the end of an iteration or release should be
analyzed and addressed.

Table 5-2 summarizes what the sprint or Release Burndown metric may indicate. The
observation in both cases may be indicative of improper planning or forecasts that did not
include valid assumptions; e.g., productivity.

Table 5-2. Sprint or Release Burndown Metric Indications

Observation Possible Indication Possible Corrective Action
Consistent early sprint
finishes

A lack of scheduled work/issues for
the given sprint. The Team may not
be committing to enough work.

1. Adjust workload
2. Reduce Team size

Consistently missed sprint
deadlines or significant
unfinished stories at the end
of an iteration or release

Can indicate a gap in planning,
features/stories are too large or
that the Team was asked to deliver
too much work.

1. Add resources to the Team
2. Reduce workload

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
52

5.6 Technical Performance and Mission Effectiveness Metrics

Teams should include metrics that are operationally relevant and address mission effectiveness.
Such metrics are highly context dependent. The specific mission and operational context may
vary widely. For example:

• A guided munition may be measured on its accuracy, its ability to evade
countermeasures, time it takes to target and launch, or ability to adapt and make
determinations in flight.

• An AI/ML based sensor fusion and threat recognition system may be measured on
precision and recall, time to make decisions, resilience in the face of sensor loss,
resistance to cyberattack, and adversarial AI countermeasures.

• An autonomous vehicle may be measured on its ability to navigate in adverse weather
and terrain conditions and complete mission-related tasks in required time frames with
high reliability.

• Ability of the system to fight through the loss of specific system elements, data, and
communication capabilities and still complete mission threads.

Whatever the context, the team working with trained operations personnel should develop
technical measures of mission effectiveness to augment the software process metrics.

5.7 Software Quality Metrics

 Recidivism (Team or Product Measure)

The Agile framework or methodology accounts for change at any stage of the project. However,
shifting requirements can negatively impact a team’s performance and result in misapplied labor
hours and developed code.

The project goal is to ensure the team can work at a consistent pace when presented with both
static and dynamic requirements. The Recidivism metric can help gain insight into this ability.

Recidivism (or rework) is the measurement of tasks (percentage of stories) as they move
backward (returned to the development team) in the predefined workflow. For example, if a task
moves from development to quality assurance, fails validation, and moves back to development,
this activity will increase the recidivism rate.

• OUSD(R&E) Lesson Learned. A high recidivism rate (nominally 15-20%, or higher)
may indicate incomplete or inconsistent requirements and may need to be investigated. It
may also point to other issues, such as code not meeting verification/validation
requirements or bad (erroneous or incomplete) test scripts.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
53

 Defect Rate (Team or Product Measure)

A defect is a condition in a product (e.g., software, system, hardware, documentation) that
(1) does not meet its requirements or end user expectation; (2) causes the product to malfunction
or to produce incorrect or unexpected results; (3) causes the product to behave in unintended
ways; or (4) leads to quality, cost, schedule, or performance shortfalls. Defects may be
documented in problem reports (trouble tickets) or may be added to the backlog for consideration
in future iterations (PSM 2022).

Defect terminology:

• Escaped Defects. Defects detected, or resolved, after release of the product and version
containing the defect. Defects are generally tracked separately for internal and external
releases.

• Contained Defects, also known as Saves. Defects detected and resolved before internal or
external release of the product and version containing the defect.

Why is the Defect metric important?

• A key tenet of Agile/DevSecOps is continuous improvement. Reviewing where escaped
defects occurred and how they happened is important to understanding and correcting
potential process flaws.

• Measuring the integrity of the CI/CD pipeline to avoid errors discovered in operations is
paramount.

The Defect metric can help answer the following questions:

• How many defects were contained (discovered) prior to internal release?

• How many defects were released (escaped) to an internal customer (e.g., Integration and
Test, Formal Test) or released (escaped) to an external customer (e.g., end users)?

• For each major release, how many defects were detected in internal development
(contained, saves)?

• What is the ratio of escaped defects (internal and external) to all defects?

• Does committed work (stories, features, capabilities) work as expected?

A Data Review Board (DRB) or Configuration Control Board (CCB) should evaluate the
probability, severity, and occurrence of each defect to define the corrective path forward.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
54

OUSD(R&E) Lesson Learned. Programs must address Severity Level 1 and Severity Level 2
defects (against the Definition-of-Done within the Agile framework) to successfully achieve
DoD acquisition milestones.

Severity Level 1 defects (Fatal) are, for example:

1. A defect completely blocks testing of the Product Backlog Item

2. A defect causes failure of the functionality

3. No work-arounds identified

4. Major data corruption

Severity Level 2 defects (Major) are, for example:

1. A defect impacts major functionality or data

2. A defect causes failure of part of the product’s functionality

3. Work-around difficult to complete

4. A defect impacts mandatory field validations (including calculations or business rules) or
performance

5. Data incorrectly displayed, corrupted, or absent (including message traffic)

 Test Coverage and Code Coverage (Product or Enterprise Measure)

In an iterative development approach, software teams should not only efficiently verify new
features but also ensure prior functionality is not affected. Verifying the features and
functionality manually can be time-consuming.

There are two forms of coverage metrics: Code Coverage and Test Coverage. Code Coverage
refers to how much of the code gets executed by the tests (e.g., percentage of statements
executed, or branches taken). Test Coverage refers to how much of the specified behavior is
exercised by the tests (e.g., percentage of functional requirements, user stories, non-functional
requirements, stress tests.) Both measure the quality of the testing and both have a role.

Typically, Code Coverage is verified primarily in structural (white box) testing at the unit level,
and requirements are verified primarily in functional or system test. Efficiency and throughput
can be enabled by automated test suites executed at multiple levels (unit level, functional level,
regression testing) (PSM 2022).

Often, automated test suites are integrated directly in the development pipeline of the software
factory and invoked upon each code commit and build, or in nightly regression test batch jobs.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
55

Test results (tests passed, tests failed) can be distributed automatically in an email so anomalies
affecting the code quality and pipeline can be quickly identified and resolved.

Modern software testing regimen emphasizes automated testing. Effort spent on test automation
usually pays off in increased quality, decreased cycle time, and fewer escaped defects. Consider
the following:

• How much of the testing is automated?

• How many tests have been validated and approved?

• How much credit is given in formal test; e.g., DT/OT, for automated test?

 Cyclomatic Complexity (Product Measure)

Cyclomatic Complexity is a measurement to determine the stability and level of confidence in a
program. It measures the number of linearly independent paths through a program module.
Programs with lower Cyclomatic Complexity are easier to understand and less risky to modify.

Cyclomatic Complexity is computed using the control-flow graph of the program: the nodes of
the graph correspond to indivisible groups of commands of a program, and a directed edge
connects two nodes if the second command might be executed immediately after the first
command. Cyclomatic Complexity also may be applied to individual functions, modules,
methods, or classes within a program.

5.8 Software Productivity Metrics

Software productivity is defined as the ratio between the functional value of software produced
to the effort (staff) and duration (time) required for that development. There are many ways to
measure productivity; however, two types of metrics are common: size- and function-related.

 Size-Related Metrics

Size-related metrics indicate the size of an outcome from an activity, e.g., lines of written source
code. With respect to lines of written source code, there are two ways to count each line: (1)
count each physical line that ends with a return; or (2) count each logical statement and consider
that as a line of code. This difference makes it difficult to compare software simply by lines of
written source code (or any other metric) without a standard definition.

Programs should keep in mind that using lines of code written as a performance metric could
lead to the risk of a decline in quality as developers may begin to favor quantity over quality in
order to satisfy the metric. If volume of code and errors are both used as a productivity measure,

https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Directed_graph
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Planning/productivity.html

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
56

for example, the development team might avoid tackling difficult problems to keep their lines of
code up and the error counts down.

OUSD(R&E) Lesson Learned. Many of the systems developed within the DoD are real-time,
communication, or embedded systems in a constrained environment such as a spacecraft, missile,
or aircraft. Bloated, inefficient code will prevent the system from achieving its performance
requirements.

 Function-Related Metrics

Function-related metrics represent the amount of useful functionality shipped during a set period
of time, such as function points or story points. Function points can be compared across teams or
projects; however, story points cannot. Work that is “1 story point” for one team may be “3 story
points” for another team. A team that is completing 40 story points per week is not necessarily
more productive than a team completing 10 story points per week as the definition of a story
point is unique to the team.

5.9 Continuous Integration, Test and Release, and Operations Metrics

Tables 5-3 and 5-4 provide additional metrics that teams can use to guide technical
programmatic decision making, continuous improvement efforts, and remediation of
impediments. See also DoDI 5000.02 (2022); DAU Metrics and Reporting (2022); and PSM
(2022) for additional definition and application of these metrics and measures.

Table 5-3. Continuous Integration Metrics

Category Metric Measure
Code and
Automated
Build/Release

Build Automation # Steps Automated, also calculated
as a percentage

Average Builds per Day/Week # Pass, # Fail, also calculated as a
percentage

Duration per Build # Minutes, # Hours, # Days -
Minimum, Maximum, Average

Development Test Unit Test Coverage % Coverage, % Automated
Static Code Analysis Coverage % Coverage, % Automated
Functional Thread Test Coverage % Coverage, % Automated

System Integration

Integrated Build Frequency # Pass, # Fail, # Deployments per
Day/Week

Integrated Build Recovery Average time (minutes, hours)
between failed deployment and
system restored to good state

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
57

Category Metric Measure
Change Volume # Deployed Story Points, Equivalent

Source Lines of Code (ESLOC),
Source Lines of Code (SLOC), etc. in
time-series

Automated Logging, Monitoring, and
Security Controls

For Cloud, Enterprise, and other
Compute Intensive Systems

% Automated Logging, Monitoring,
and Security Controls

Table 5-4. Test and Release Metrics

Category Metric Measure
Test and Release System Test Coverage % Coverage, % Automated

Test Progress # Planned vs. # Attempted,
categorized by Passed, Failed,
Blocked

System Test Frequency # Tests per Build, delineated by Day
or Week

Functional Test Frequency # Tests per Build, delineated by Day
or Week

Fix Fail Rate % Discrepancy Report Fixes that
reappear or fail in verification

Site Reliability Engineering (SRE) focuses on tasks that have historically been accomplished by
operations teams, often manually, and instead gives them to engineers or operations teams who
use software and automation to solve problems and manage production systems. SRE is a
valuable practice for creating scalable and highly reliable software systems. Table 5-5 identifies
applicable Operations metrics (Red Hat 2022).

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
58

Table 5-5. Operations Metrics

Category Metric Measure
Operations Availability, SW Uptime by Environment # Total Active Environments in

Operation, less # those in creation,
recovery, and maintenance

Reliability # Hours/Day, # Days/Week, also
calculated as %

Performance by Critical Capability Response Time vs.
Threshold/Objective

Service/Environment Restarts # per Day, % Automated
Help Desk/Field Incident/Problem Ticket
Volume

New, # Closed in time-series

SW Patches # Available, # Applied in time-series,
also Applied calculated as %

Stability Hours/Days, Service/application
Uptime between Restarts

Activate Recover Environments Time to create in Seconds/Hours
Environment Utilization in time series # Days, in time-series
% of automated environment monitoring of
features/controls throughout lifecycle
stages

Create/activate/recover stages

5.10 Benchmarking and Parametric Analysis

A common set of core metrics collected across a program’s life cycle provides the basis for
benchmarking, parametric analysis, and other forecasting and statistical modeling activities.

Capturing a project’s past performance as a benchmark is critical to understand how that project
might perform in the future. Benchmarking involves calibrating specific project actuals (e.g.,
software size and capability, effort, duration, quality (defects)) and using those to evaluate
current or project future performance.

OUSD(R&E) collects a set of core software metrics (Table 5-6), common across all programs.
This data is used for benchmarking, parametric analysis, and other forecasting and statistical
modeling activities supporting program reviews.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
59

Table 5-6. Core Benchmarking Metrics

Category Metric Measure

Size SLOC, ESLOC, Story Points*,
Function Points, etc.

Planned and Actual

SLOC, ESLOC to capture new / modified /
reused / auto-generated, by Build, in time-
series (optionally by Computer System
Configuration Item (CSCI)).
Requires common code counting
formulas/tools, e.g., Unified Code Counter
(UCC)

*Note: While story point magnitudes are not
directly comparable across teams, derived
measures such as % overrun can be
compared

Schedule Software Schedule by Build
and Release

Months Planned and Actual, reflecting any
updates/changes

Staffing SW Context # Planned and Actual Full Time Equivalent
(FTE), reflecting any updates/changes
(optionally by labor category)

Effort SW Context # Planned and Actual Labor Hours, in time-
series (optionally by CSCI)

Defects Defects # Actuals, by Severity

Defects to capture discovered / fixed / closed
/ deferred by severity/priority, by Build, in
time-series (optionally by CSCI)

The core software benchmarking data collected by OUSD(R&E) (Table 5-6) can be filtered by
different criteria like domain, size, development methodology, etc. This is particularly useful for
selecting data that is analogous to the program/project/data set being analyzed.

OUSD(R&E) Case Study 4. The OUSD(R&E) Software Team used benchmark data from
analogous programs to help a program office determine that the contractor’s (CTR) proposed
software development plan was very aggressive, reliant on achieving very high productivity, and
had a low probability of completion. Analogous programs showed historical performance in the
53 – 58-month range (Figure 5-4, green triangle). At 32 months, the CTR’s plan required much
higher productivity than analogous historical programs and much higher productivity than
recorded by any program in that domain. OUSD(R&E)’s analysis projected an approximate 50-
month development effort. The contractor was unable to realize the expected productivity gains
and did not finish the project in the initially projected 32 months. However, the CTR did finish
the project in 48 months, better than the historical efforts but still over 16 months later than the
initial plan.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
60

Source: OUSD(R&E) Software Team

Figure 5-4. Comparing Planned, Forecast, and Actual Performance

 Software Size

Contractors often provide optimistically high software reuse estimates, with substantial risk
hidden in the assumptions. The proposed reuse code often was not developed for reuse (e.g., to
new cybersecurity or certification requirements) or for new architectural constructs (e.g.,
monolithic to microservices), which can result in the need for significant modification of code or
for new coding if the modification becomes costlier than new coding.

OUSD(R&E) Finding. Based on data collected and assessed across MDAPs, most programs
experience overall size growth of approximately 25 percent during Engineering and
Manufacturing Development (EMD). Analysis indicates the growth can be attributed to a few
common causes, such as optimistic contractor proposals and estimates, overly optimistic reuse
estimates (reused code reduces the amount of required mod/new code), and requirements (poor
stakeholder involvement, volatility/churn, evolving).

OUSD(R&E) Finding. Reuse of code from a monolithic system will probably require extensive
modification for use on a microservices-based system (via the strangler pattern). With the
transition to more modular modern architectures, the need for extensive modification has been
increasingly observed, which has resulted in programs underestimating the effort needed for
code reuse. A recommended best practice is that for those programs that expect significant reuse,
to review the proposed reuse codebase for applicability and assess potential modification risk.

32 months
Initial Plan

0 10 20 30 40 50 60 70

Project Duration (Months)
(Lower is better)

R&E Analysis
Projected
50 months

Historic
Range
53-58

Months

Range
If Above Average

Productivity
Achieved

41-53
Months

36 months
PMO Est.

44 months
Execution
Post EMD

Initial CTR Plan: 32 months
Actual Completion: 48 months

R&E Projected: 50 months

Actual
Completion
48 months

Pr
od

uc
tiv

ity
 R

eq
ui

re
d

(H
ig

he
r

is
 b

et
te

r)

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
61

A recent program did just that and uncovered a 12 to 16-month schedule risk based on the
assembled panel’s code review and discussions with contractor development staff. These
findings helped the program identify the risk early and work with the contractor to mitigate
that risk.

 Software Schedule

Programs often try to compress the software development effort into the available schedule
without commensurate scope reductions. A highly compressed schedule rarely provides positive
results, as the below example from a recent program shows.

OUSD(R&E) Finding. Data collected across MDAPs show staffing and staff skill sets continue
to be a typical area of risk, particularly as the DoD becomes increasingly dependent on software.

OUSD(R&E) Case Study 5. The program was an Agile follow-on development effort (Figure
5-5) and illustrated the hazards of schedule optimism. The software development effort was
organized in 2-week sprint cycles leading to Program Increment (PI) releases every 3 months.
The plan consisted of a bootstrap PI, followed by five PI releases and a sixth clean-up PI. The
bootstrap PI (Release (R)0) and clean-up PI (R6) were slightly shorter than 3-months in duration.
From the beginning, the schedule was compressed, by running final System Integration and Test
(SI&T) and Full Qualification Test (FQT) in parallel, to achieve system certification by the
threshold date. The initial bootstrap PI (R0) ran into several issues resulting in a ~159% of
plan overrun.

The program added temporary staffing to compensate. As it became clear that R1 would not
complete on time, the program revised the plan creating more schedule compression/parallel
tracks and added additional staffing to increase burndown velocity. However, R1 also resulted in
an even greater overrun than R0. The schedule was un-executable within the defined factors, but
the program resisted either de-scoping or extending the delivery schedule. Eventually, the
program de-scoped but still tried to retain the original threshold certification date by developing
two Releases in parallel, in parallel with SI&T and FQT. Clearly, this is a high-risk approach.

Eventually, the program paused to assess how, or whether, to proceed. Although the program had
added staffing, the new staffing did not immediately improve burndown because of the learning
curve for new personnel. The story point burndown projections became increasingly back loaded
and parallel efforts created new issues.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
62

Source: OUSD(R&E) Software Team

Figure 5-5. Schedule Optimism vs. Realism

 Software Staffing

New programs often suffer from optimistic staffing assumptions. OUSD(R&E) has observed that
the increased demand for software-enabled functionality, increasingly shorter capability demand
cycles, and the competitive software job market for skilled cleared individuals has led to
software staffing challenges. Software staffing ramp rates are frequently optimistic given the
scale of MDAPs. Program management offices and contractors often struggle to find the level of
experience and skill sets needed and/or getting many individuals cleared at the pace planned. The
clearance process can take many months and is out of the program’s control, making it difficult
to plan and keep staff productive until the clearance is granted (Tate 2020).

OUSD(R&E) Finding. Data collected across MDAPs show staffing and staff skill sets continues
to be a key risk that is frequently encountered, particularly as the DoD pushes to adopt modern
software development methodologies and toolsets, and program offices are encouraged to take
ownership of the technical baseline and the software factory, for example, Platform One.

OUSD(R&E) Case Study 6. An MDAP had planned to ramp up its software staff from 10
experienced people to 200 people over a span of 9 months (Figure 5-6). This amounts to a ramp
rate of 21 people per month. To work the project those people needed to have proper security
clearances and experience. Initially the contractor was able to meet the planned ramp rate by

Year 1 Year 2 Year 3 Year 4

5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9

R2

Orignal
Plan

Actual
Revised Plan
Baseline Plan

Plan Revised
During
R1

R0 (Actual)

R0 R1 R2 R3 R4 R5 R6

R1 (Actual)
R3

R4
R5

R6
Schedule compression

Cert
Threshold

Likely
based on
Burndown
Velocity*

* At 3 mo Avg SP burndown velocity

R0 (Actual) R1 (Actual) R3
R4

~8-10 mo. past
threshold

Projected completion based on current SP burndown velocity*
& removal of concurrent testing

R2 (Actual)Rev.Plan
Start R2

R0 (Actual) R1 (Actual)

R4 R5
R6

R3

R2 (Actual)R0 (Actual) R1 (Actual) R4

Rev. Plan
During R2

Orig. Handover to
FQT & SI&T

More Schedule compression

R2 (Actual)

SIT
FQT

Removal
of 2 mo.
hardening
cycle (R6)

R3
SIT
FQT

Compressed/Concurrent
SI&T/FQT/Cert Span

Concurrent R3 & R4 Dev. &
test (SI & FQ) spans; removal

of R6 (hardening)

Re-plan but with build & test concurrency

Hardening

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
63

transferring cleared people from other projects. Soon competition with other programs in a tight
market for qualified people led to increased difficulties meeting the planned ramp rate.
Mandatory overtime and cancellation of leave temporarily led to increased staff hours covering
some of the shortfall, but also increased retention issues. Eventually, because of difficulties
reaching planned staffing and productivity levels, the contractor delayed the development
milestones to conform to more achievable staffing levels.

Source: OUSD(R&E) Software Team

Figure 5-6. Planned vs. Observed Staffing Levels

 Software Effort

Underestimation of the amount of effort needed to create software is the major driver of cost
overruns and schedule delays. The amount of effort needed to deliver a feature or capability is a
function of productivity. Productivity is loosely defined as the ratio of the amount of output to
unit of input (Productivity = Output ÷ Input). As stated in the Software Productivity section
above, two types of productivity metrics are commonly encountered: size- and function-related.

DoD productivity data collected to date shows a wide variance in productivity rates
(ESLOC/hour) not only across different domains, but also within domains. The variance between
high and low performance programs is stark, requiring the critical analysis of planned and actual
performance. why there are such wide differences in productivity.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
64

Claim. For benchmarking, parametric, and other forecasting analysis and statistical modeling
activities, ESLOC/hour is the most frequently encountered productivity basis. DoD contractors
have captured extensive historical data in SLOC and ESLOC form. In particular, the SRDR DID
requires the use of the latest Government-approved version of the University of Southern
California (USC) Center for Systems and Software Engineering (CSSE) Unified Code Counter
(UCC). The Government has conducted Independent Verification and Validation (IV&V) that
ensures the code counter can be used on Government systems and provides standardized results
across the DoD community. (CAPE) Despite an increase in Agile/DevSecOps prevalence,
ESLOC/hour continues to be collected and used, allowing for historical program productivity
comparisons.

5.11 Weibull Analysis of Defect Trends

This section discusses Weibull analysis, a statistical technique that uses software defect data to
assess and forecast software maturity. It describes the concept and provides tips on preparing
data and on interpreting the results.

The underlying mathematical technique dates from the early 1960s and has been used with
success in a number of fields. These include:

• Reliability measurement of materials; e.g., mechanical parts subject to wear (aircraft and
ship propellers).

• Modeling the spread of fast-moving computer cyber-attacks over a network; e.g., Code
Red.

• Modeling and analysis of cascading network failures.

The U.S. Air Force published a Weibull Analysis Handbook (Pratt and Whitney 1983) that
provides instructions on how to do Weibull analysis and an understanding of the commonality
between the military and industry.

This modeling technique has been applied to software engineering to bring analytical rigor. Two
major applications include:

• Modeling the staffing levels over time on large software development projects.

• Modeling the software defect insertion and detection rates to assess software
development process effectiveness as well as projecting the level of latent defects
(technical debt.) in software components or systems.

The Rayleigh distribution is a special case of the Weibull distribution. This distribution forms the
mathematical basis behind much of the parametric modeling approaches to modeling staffing
rates and statistics-based baselined projections of defects over time. The underlying assumption
is that people make mistakes (i.e., create errors in the form of defects) at a constant rate; and

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
65

people are on-boarded rapidly at the beginning of a project and later off-loaded at a slower rate
as development and testing activities are completed. This phenomenon is best emulated by a
Rayleigh distribution. The Rayleigh curve can be used to estimate defect insertion as well as
defect detection. By minimizing the time between defect insertion and defect detection to
development teams can reduce the amount of rework and operate more efficiently.

 What Weibull Defect Trend Analysis Indicates

As software moves through phases from development to production, the plot of cumulative
number of defects discovered over time follows a regular pattern. By measuring and observing
this pattern, the Program Manager can gain insight into how well the software is maturing. (This
is as true for software developed in Agile development processes as it is for more traditional
development processes. However, the Rayleigh curve may not accurately reflect the defect
profile observed for a fixed number of software staff during Sustainment.) The manager can
gauge whether the projected reliability and performance of the system is in line with
expectations.

Kan (2003) reports that this method requires about 60 percent of the defects to have been
discovered to produce significant forecasts. Even so, the accuracy of the forecasts for practical
purposes falls in the range of plus or minus 10 to 20 percent. It can provide a ballpark estimate of
future defect discovery rates, but the conclusions of this analysis should always be correlated
with other data.

 How Weibull Defect Trend Analysis Works

Time series Defect Data is used to fit a probability distribution for software defects over time.

Early in a project when little code has been produced, there are few opportunities to discover
defects; there are fewer test cases to exercise and less capability to test. As the project progresses
and more code is produced, more tests will be exercised. This increased testing uncovers more
defects as that is reflected by the increased slope of the curve. As the system matures, this rate of
defect discovery will slow, and the curve will begin to flatten.

Figure 5-7 taken from several years of actual defect data from a major DoD weapons program
illustrates this behavior. This form of analysis was able to successfully forecast the maturity of
this weapon system and its eventual successful fielding 6 months later.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
66

 Source: OUSD(R&E) Software Team

Figure 5-7. Cumulative Defects

The smooth line shows a Weibull distribution curve calculated from defect report data. Best fit
determines Weibull model parameters (size and shape) that define a curve W(t) that relates
percent defect removal to time. Analysts can then solve for either, in terms of the other.

As software is developed, the rate of defect discovery climbs, peaks, then decreases ever more
slowly as the software matures. Duration sufficient to remove 95 percent of defects is expected
from robust systems engineering practices (Kan 2003). The model can forecast when the 95
percent point will occur given a consistent testing regimen (i.e., test cases or hours of testing).

Compared with the non-cumulative graph of defect rates in Figure 5-8, the cumulative graph
smooths out much of the variation in actual defect data. The monthly defect discovery rates will
be highly variable. Curve fitting with only a few data points can produce unreliable forecasts,
and these monthly reports will not inspire confidence. The curve is not intended to forecast
monthly rates over the course of development. Instead, it is used to forecast long-term trends,
with forecasts and cumulative actuals converging over time.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
67

Source: OUSD(R&E) Software Team

Figure 5-8. Weibull/Rayleigh Curve Models Defect Rates

The idealized model is based on assumptions about constant rates of testing effort, stable
development, etc. but has proven robust in practice even when those assumptions are violated
(Kan 2003).

Monthly peaks and valleys usually can be traced to an event in the program. Peaks may be the
result of inspections and reviews, or software integration and test. Valleys may be the result of
lowered testing activity which may occur over a holiday or vacation season. Such variations are
smoothed out in a cumulative chart of the data but prominent in time series of monthly discovery
rates.

 Tips on preparing the data

One advantage of Weibull analysis is that it relies on objective data that is typically available for
any professionally managed software development effort. Defect data is routinely collected in
automated bug tracking software that developers and testers use to report and monitor defects for
their own internal management purposes. Using this existing data for maturity assessment
requires marginally little effort once the underlying assumptions have been validated.

The data required for analysis is a time series of defect arrivals. The raw event dates of the
individual defect reports are binned into convenient time frames such as weekly or monthly. The
counts in these time frames can be plotted to create a “cumulative” or “arrival rates” plot.

5. Software Metrics Use and Lessons Learned

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
68

Programs will often report defects in terms of severity and priority. Severity is often linked to the
mission impact of the defect. Priority is linked to decisions to assign resources to address the
defect. The two are often but not necessarily correlated.

Weibull analysis can also be performed for the subset of severe or high-priority defects, to
forecast when software might be releasable.

 Applicability to CI/CD Pipeline

The Weibull/Rayleigh analysis presented here has been applied to conventional software
development efforts. How well does this approach apply to CI/CD pipelines? One might expect
that the small batch sizes and continuous testing would flatten out the defect curve into a steady
state. Perhaps, individual batches experience reliability growth curves that fit the
Weibull/Rayleigh model, but these variations are smoothed out as the batches are staggered in
time. As of this writing, there remains a lack of empirical data to validate or refute these
suppositions. This suggests that programs should collect their own data and determine for
themselves whether the patterns observed conform to this model in ways that are helpful in the
context of their effort.

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
69

6 Software Engineering and Workforce Competencies

• DoD must compete with national and global industry for digital talent.

• Successfully executing a software effort requires the ability to staff the effort
quickly with qualified software professionals, including those requiring clearances.

• The modern software factory requires features such as automated and continuous
testing and advanced AI/ML capability.

DoD must identify, hire, and train professionals capable of developing software for modern
warfighting. Changes in software technology require changing competencies, knowledge, skills,
and abilities. As DoD competes for the same digital talent as many large companies nationwide
and worldwide, identifying the correct qualifications is essential for developing an effective
software engineering workforce.

The Under Secretary of Defense for Personnel and Readiness (USD(P&R)) is granted the
authority to establish and implement policy, establish procedures, provide guidelines and model
programs, delegate authority, and assign responsibilities regarding civilian personnel
management within the DoD (DoDD 5142.02 2008). Under this authority USD(P&R) has
established the Five-Tired Competency Framework as the basis for a competency-based
approach to personnel management in DoD.

OUSD(R&E) commissioned a series of studies by the RAND Corporation to clarify the skills
and competencies the Department needs to modernize its software engineering processes. The
report Software Acquisition Workforce Initiative for the Department of Defense (Robson, et al.
2020) codified recommendations for 48 workforce competencies spanning software engineering,
cybersecurity, artificial intelligence, embedded systems, and more.

This section discusses a definition of DoD “competency,” summarizes the RAND study findings
regarding software development, and highlights competencies the DoD requires in the defense
software workforce and software factory. The section also summarizes results as of early 2023 of
DoD working groups such as the DoD Digital Talent Management Forum, as well as recent
innovations such as the Defense Cyber Workforce Framework (DCWF) that advance the cause
of shaping the DoD workforce to meet present and future needs.

6.1 DoD Five-Tiered Competency Framework

The Defense Civilian Personnel Advisory Service (DCPAS) (DoDI 1400.25 Volume 250 2016)
defines “competency” as an observable, measurable pattern of knowledge, skills, abilities,
behaviors, and other characteristics (KSAOs) needed to perform work roles or occupational
functions successfully.

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
70

Figure 6-1 shows a DoD-wide Five-Tiered Competency Framework promulgated in policy by
the USD(P&R). Any software engineering and workforce competencies identified must align
with this framework to be implementable within the existing DoD personnel processes and
governance structures.

There is no single approach to developing competency models, but DCPAS and other
organizations follow a few steps, including a thorough review of existing data, drafting an initial
model, gathering inputs from SMEs, refining the model, and validating the model.

Source: DoDI 1400.25 vol 250 June 2006

Figure 6-1. Five-Tiered Competency Framework

Tier 1 focuses on core competencies that apply across DoD and are not specific to a position or
agency. An example of Tier 1 competency could be “demonstrates integrity.”

Tier 2 competencies apply across an occupational series; for example, “cybersecurity” could be
applied across all of IT.

Tier 3 competencies focus on KSAOs specific to subspecialties that may exist in one or more
occupational series; for example, “software assurance” could be considered a sub-occupational
competency for a specialty within IT.

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
71

Tier 4 adds further detail to components and agencies, for example, competencies required to
work at the Air Force Sustainment Center.

Tier 5 competencies are meant to capture any additional KSAOs needed for a specific position
that are not already addressed by Tiers 1 to 4.

6.2 RAND Software Competency Study

The RAND study (Robson, et al. 2020) identified 48 software acquisition competencies that
DoD needs in order to plan and execute modern software development as practiced in the
commercial sector. Identifying, prioritizing, and managing the acquisition, development,
training, and retention of those competencies is critical to developing and delivering the
software-enabled warfighting capability needed to perform the DoD mission.

The following 48 software engineering competencies are wide-ranging and described in terms of
DoD work activities and tasks. Critical software engineering competencies and definitions for
DoD software acquisition professionals supporting the pathway include those listed in Table 6-1
and discussed in the following sections.

Table 6-1. DoD Software Acquisition Workforce Competencies (RAND Study)

RAND Software Competencies and Topics

Problem Identification 1. Capabilities Elicitation
2. Business Case Development

Solution Identification

3. Strategic Risk/Reward Analysis
4. Cloud Computing
5. Software Ecosystems
6. Model-Based Engineering

Development Planning

7. Development Tempo
8. Release Planning
9. Software Development Planning
10 Planning for Continuous Delivery
11. Planning for Continuous Deployment
12. System Engineering Planning
13. Software Metrics
14. Configuration and Version Control

Transition and Sustainment Planning
15. Software Documentation
16. Contracting for Software Development
17. Data & Proprietary Rights Management

System Architecture Design

18. Architecture Design Approach
19. Software Orchestration & Choreography Patterns
20. Software Deployment Patterns
21. Artificial Intelligence and Machine Learning Applications
22. Augmented & Virtual Reality Applications
23. Embedded Systems
24. Balancing Quality Attributes
25. Emerging Technologies

Modeling Functional Capabilities & Quality Attributes
26. Use and abuse case Modeling
27. Validation of Performance Requirements
28. Validation of Sustainability Requirements

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
72

RAND Software Competencies and Topics
29. High-Fidelity System Modeling

Building Secure, Safe & High-Availability Systems

30. Software Assurance
31. Cybersecurity
32. Safety Critical Systems
33. High-availability Systems

Software Construction Management

34. Life-Cycle Management
35. Detailed Backlog Management
36. Release Management
37. Change Management
38. Automated Test & Continuous Integration

Software Program Management

39. Effort Estimation
40. Product Roadmap & Schedule Management
41. Cost Management
42. Legal Policy and Regulation
43. Risk, Issues, & Opportunity Management

Mission Assurance
44. Quality Assurance
45. Root Cause, Corrective Action
46. System Integration & Testing Professional Competencies

Professional Competencies 47. Strategic Planning and Change Management
48. Innovation and Entrepreneurship

Source: Robson et al. 2020

The software engineering competencies are intended to augment but not replace any existing
DoD competencies for acquisition; e.g., contract management, program / project management,
systems engineering, mission assurance.

Problem Identification:
(1) Capabilities Elicitation – Engage with stakeholders (to include representative end user

organizations, owners, developers, integrators, certification authorities, independent
validation and verification personnel, and operators) to elicit capability objectives (i.e.,
functional requirements) and quality attributes (i.e., non-functional requirements) for the
proposed system.

(2) Business Case Development – Explore the problem space and identify focal areas for
acquisition.

Solution Identification:
(3) Strategic Risk / Reward Analysis – Evaluate and balance risk/reward from various

stakeholder perspectives, including the sponsoring organization, end users, test and
evaluation teams, cybersecurity compliance officers, and data rights managers.

(4) Cloud Computing – Identify resources needed to operate and sustain DoD unique Cloud
platforms

(5) Software Ecosystems – Employ existing and emerging DoD, open source or third-party tech
to support shared resources

(6) Model Based Software Engineering – Create a digital environment that uses high fidelity
hardware and software in the loop models, prototyping, visualization, simulation, and
dependency analysis

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
73

Development Planning:
(7) Development Tempo –- Determine the software life-cycle approach to be used and the tempo

of software construction, release, and deployment to operations.
(8) Release Planning – Determine the MVP or MVCR and definition of “done” for each release.
(9) Software Development Planning – Apply methods, processes and training needed for

software construction (design, code, test, build, build, integrate, release). Identify tools and
methods for backlog management, continuous integration, automated regression testing, and
release management.

(10) Planning for Continuous Delivery – Identify methods (e.g., DevSecOps), tools, processes,
and training for automating the software release process.

(11) Planning for Continuous Deployment – Identify the software that could benefit from rapid
delivery into operations.

(12) Systems Engineering Planning – Develop methods, processes, and training that align to the
software development life cycle, tempo, and release plans.

(13) Software Metrics – Select appropriate metrics and measures at the team, program, and
stakeholder level to monitor software scope, cost, schedule, and quality.

(14) Configuration and Version Control – Develop strategies for identifying and managing the
configuration of the system and software development and test environment.

Transition and Sustainment Planning:
(15) Software Documentation – Document software planning, requirements, design, code,

validation, verification, and sustainment needs in the program planning.
(16) Contracting for Software Development – Ensure that contract requirements, constraints, end

items, and data deliverables are compatible with the selected tempo, release planning,
software and system development planning, metrics, and documentation requirements.

(17) Data and Proprietary Rights Management – Negotiate data rights up front if elements of the
software or system will be acquired from DoD-external sources (i.e., open source
repositories, commercial-off-the-shelf (COTS) software, GOTS software, or from private
entities) to ensure DoD will have assured access to all mission-critical software throughout
the life of the supported system. Ensure that all software licenses are in compliance with
federal regulations and compatible with program needs..

System Architecture Design:
(18) Architectural Design Approaches – Determine “how much” architectural design effort is

needed to ensure a successful acquisition. Consider benefits and risks of adapting practices
from modern architectural design methods such as Artifact Driven, Use/Abuse Case Driven,
Attribute Driven, Domain Driven (i.e., Manage by Architecture), or Human-Centered
Design when selecting an architectural design approach.

(19) Software Orchestration and Choreography Patterns – Determine the patterns the software
will use and consider common orchestration and choreography patterns (e.g., client/server,

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
74

publish/subscribe, peer-to-peer, and services/ microservices) that balance quality attributes
for timing performance (latency, throughput), safety and security.

(20) Software Deployment Patterns – Determine how the software will be deployed onto the
computing infrastructure in the operational system.

(21) Artificial Intelligence and Machine Learning Applications – Identify and implement
architectural components, methods, processes, and training of incorporating artificial
intelligence and machine-learning techniques to create autonomous cyber-physical systems,
automated or augmented decision support tools, or other emerging AI based systems.

(22) Augmented and Virtual Reality Applications – Identify and implement architectural methods
and processes that balance correctness and safety in augmented VR applications.

(23) Embedded Systems – Employ explicit strategies for incremental realization of capabilities
within the constraints of the hardware supply chain.

(24) Balancing Quality Attributes –Evaluate alternative design solutions and architectures to
effectively balance the quality attributes for critical mission threads or other identified
scenarios.

(25) Emerging Technologies –- Maintain an understanding of emerging technologies, the
implications these technologies may have on a given organizational need and solution space.

Modeling Functional Capabilities and Quality Attributes:
(26) Use / Abuse Case Modeling – Use static and dynamic views to model the software

components that implement the required capabilities of the software to identify the use cases.
(27) Validation of Performance Efficiency Requirements – Validate the capability to meet

performance efficiency requirements (with margin as appropriate to the life-cycle phase)
under realizable nominal, best, and worst-case conditions for each mission-critical thread.

(28) Validation of Sustainability Requirements – Validate sustainability features of the software
architecture with consideration for specific needs associated with high availability and
safety-critical systems.

(29) High Fidelity System Modeling – Create a digital, high-fidelity representation of the as-built
system that reflects lessons learned in test or operations to support the analysis of critical
quality attributes.

Building Secure, Safe and High Availability Systems:
(30) Software Assurance – Determine appropriate coding standards, static and dynamic analysis

rules, test code coverage, and fuzz testing standards needed to ensure the integrity of the
acquired software.

(31) Cybersecurity – Identify and continuously evaluate the key security components of the
architecture (such as Zero Trust, STIGs, whitelists, audit traces, and multilevel security
guards), and specify the methods and processes that will be used to assure their integrity
throughout the program life cycle

(32) Safety Critical Systems – Provide technical analysis relevant to safety-critical systems (e.g.,
aircraft, nuclear systems, ground combat systems, missile systems, space systems) or

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
75

portions of systems (e.g., deployment mechanisms that interface with live ordnance), apply
available best practices or required standards such as Radio Committee for Aeronautics
(RTCA) standard DO 178C (Software Considerations in Airborne Systems and Equipment
Certification), and Military Standard (MIL-STD) 882E (Department of Defense Standard
Practice for System Safety) and successors to increase the safety of operational software.

(33) High Availability Systems – Establish service-level indicators to measure reliability/stability
of the software and system from the user perspective. This metric should be over time and
include, for example, identifying user-defined mission-critical threads and stressing test
cases such as max load in off-nominal conditions. A good attribute is to have actual users
demonstrate their standard operating procedures.

Software Construction Management:
(34) Life Cycle Management – Update plans to address obsolete or emerging technologies,

methods, processes, and tools. Identify timing, content, and stakeholders for retrospective
reviews.

(35) Backlog Management – Develop and maintain a list of capabilities (the product backlog)
and the tasks that are required to realize those capabilities mapped to the release plan.

(36) Release Management – Synchronize software releases with the development of models,
simulations, test beds, and operations environment(s) as needed to ensure compatibility. Use
the “done” criteria from the release planning to identify the required verification steps
(inspection, analysis, unit, integration, or acceptance test) for each release to higher levels
of integration testing, certification activities, and/or operations.

(37) Change Management – Implement mechanisms to ensure that decisions regarding proposed
and approved changes are communicated clearly to all stakeholders for the program
planning, requirements, architectural design decisions, code, as well as validation and
verification artifacts.

(38) Automated Test and Continuous Integration – Automate the tests (from unit tests to system
integration tests) when feasible to allow for rapid discovery of integration issues. Identify a
subset of the test to function as a “smoke test” for daily or on-demand builds of the software.

Software Program Management:
(39) Software Effort Estimation – Create and maintain an estimate of the total software

acquisition effort (labor and material), accounting for software size, complexity, precedent,
team cohesion, and the development team’s direct experience. Use parametric, historical
comparisons (analogies) and bottom-up effort estimates from the development team, as
appropriate, to support business case development and acquisition strategy refinement.
Revise the acquisition strategy accordingly.

(40) Product Roadmap and Schedule Management – Timebox releases to provide structure to
your roadmap and “fix” time/schedule (the questions becomes the amount of value that can
be delivered within the timebox). Implement plans for capability/feature development and
release (the product roadmap) and monitor velocity of software production.

(41) Cost Management – Dedicate teams and map them to capabilities or underlying
Epics/Features to the greatest extent possible to “fix” costs (this allows you to understand

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
76

the cost per capability for investment decision-making). Monitor actual software production
metrics versus labor and material expenditures, and update effort estimates and cost
baselines as needed.

(42) Legal Policy and Regulatory Environment Management – Understand and adhere to relevant
laws, congressional budgets (fiscal year funding constraints), regulations and certification
requirements, and policies (e.g., data rights, export rules).

(43) Risk, Issues and Opportunity Management – Implement and manage a closed-loop process
to actively track risks and issues as they arise, identify opportunities for improving products
and processes that add to the value for the user, and continuously reassess program plans to
mitigate risks and realize opportunities.

Mission Assurance:
(44) Quality Assurance – Establish criteria for reviewing and auditing the software supply chain

across all sub tiers as necessary to ensure program success.
(45) Root Cause Corrective Action – Monitor the program and software metrics to identify early

indicators of adverse trends, defects and technical debt and determine root causes. Use
statistical control or other methods to proactively propose changes.

(46) System Integration and Testing – Automate integration and test activities to the fullest extent
practical and build them into the software release process.

Professional Competencies:
(47) Strategic Planning and Change Management – Take a long-term view and build a shared

vision with others, act as a catalyst for organizational and cultural change. Influence others
to translate strategic planning into action.

(48) Innovation and Entrepreneurship – Provide transformational solution-based approaches to
problem solving and building products by employing an iterative process to empathize,
define, ideate, build/prototype, and test (i.e., design thinking); and institute a culture that
encourages continuous learning and innovation.

6.3 Agile/DevSecOps Software Factory

A DoD Agile/DevSecOps software factory (DoD CIO DSOERDK 2021) includes people,
processes, and tools. The software factory should include the following features for best results:

• An Agile/DevSecOps software development and orchestration pipeline, using continuous
integration and continuous deployment tools and techniques.

• Software architecture designs using Cloud-native microservices and automated tools.

• Software estimation, software measures, and automated metrics generation.

• Software development using automated and continuous testing.

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
77

• Software assurance, cybersecurity, and site reliability engineering.

• Machine learning, artificial intelligence, and the pervasive use of automation.

6.4 Organizational Competency Needs

Service components and agencies should form, organize, optimize, and continuously improve
their program software engineering Government and contractor workforce. They should focus on
the people, culture, and team cohesion, and create a constructive Government and contractor
working environment.

Following are example position titles within a PMO using an Agile/DevSecOps software factory.
All the aforementioned competencies should be organic across these software acquisition
positions.

• Product Manager

• Product Owner

• Product Designer (user research, UX, UI, visual design)

• Software Engineer

• Software Developer

• Software Quality Engineer

• Safety Engineer

• Architect

• Platform Engineer

• IT Engineer

• Security Engineer

• Data Scientist

• Data Engineer

• Quality Engineer

Following are items to consider in refining competency requirements:

• What percentage of my staff has experience working on a DevSecOps project?

• What training and credentialing are available to develop and verify competencies?

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
78

6.5 DoD Digital Talent Management Forum

After publication of the RAND Report, OUSD(R&E) established the DoD Digital Talent
Management Forum (DTMF) in accordance with Section 230 of the NDAA (FY 2020): “Policy
on the Talent Management of Digital Expertise and Software Professionals.” OUSD(R&E) and
OUSD(A&S) co-lead the forum, which focuses on understanding how Components are
managing digital talent. The DTMF absorbed two former Chief Digital and Artificial Intelligence
Office (CDAO) groups (Section 8.2), the Artificial Intelligence (AI) Workforce Subcommittee
and the Data Talent and Culture Working Group, to form an expanded DTMF. The DTMF
includes members from 42 DoD organizations and meets monthly to exchange useful
information and lessons learned.

6.6 DoD Cyber Workforce Framework

The Department developed the DoD Cyber Workforce Framework (DCWF) to provide a
standardized way to describe cyber work for military, civilian, and contractor personnel and to
support talent management for these activities. Office of the DoD Deputy CIO for Resources and
Analysis, Cyber Workforce Directorate manages the DCWF. The framework is the authoritative
reference for identifying, tracking, and reporting DoD cyber positions, including a coding
structure for authoritative manpower and personnel systems, pursuant to DoDD 8140.01 (2020).

The warfighting domain continues to evolve in threat and complexity. Talent, and supporting
workforce management practices, must then continue to evolve to address the ever-changing
landscape posed by our adversaries to meet the strategic mission requirements of tomorrow. As
of this publication, the DCWF has expanded from the 54 original work roles to 65 roles, with the
inclusion of AI and Data & Analytics.

The DCWF approved software work roles are as follows:

• (621) Software Developer (update)

• (628) (New) Software/Cloud Architect

• (461) Systems Security Analyst (update)

• (627) (New) DevSecOps Specialist

• (625) (New) Product Designer User Interface (UI)

• (626) (New) Service Designer User Experience (UX)

6. Software Engineering and Workforce Competencies

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
79

• (806) (New) Product manager

• (673) (New) Software Test & Evaluation Specialist

The DCWF tool, https://public.cyber.mil/cw/dcwf/ (DCWF 2022) provides access to DoD’s
authoritative lexicon based on the work an individual is performing, not their position titles,
occupational series, or designator. The searchable tool includes a public and a CAC-enabled
version. For more information, view the DCWF Orientation Training video at
https://public.cyber.mil/training/dcwf-orientation/ (DoD CIO 2022).

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
80

7 Contracting for Software Engineering in DoD

• The Software Acquisition pathway is designed to enable modern software practices, but
programs in the traditional acquisition system also have successfully tailored contracts to
accommodate new software methods.

• The Agile approach allows “real-time” visibility into the project status.

This section provides information to help DoD acquisition professionals navigate the contracting
process and remove obstacles to modern software engineering practices. This section discusses
traditional systems and recent innovations in the AAF governing DoD acquisitions. This section
also identifies best practices for selecting and tailoring contract vehicles to support the software
engineering processes that enable continuous delivery.

Although the Software Acquisition pathway is designed to enable modern software practices,
Program Managers have succeeded in tailoring software development agreements supportive of
those practices in the context of the traditional system. They report that the acquisition system is
more tailorable and flexible than many realize, with proper understanding of the processes and
how to adapt the agreements and contracting vehicles (DIB 2019b).

The DAU website on the DoD AAF (https://aaf.dau.edu/aaf/software/contracting-strategy)
provides additional guidance on contracting for software engineering in DoD.

7.1 Agile and DevSecOps Software Development Contracting

Planners should keep in mind the following goals for any software development contract:

1. Define the purpose of the project (i.e., what are the parties trying to accomplish).

2. Define how the project is to be established and managed.

3. Define what happens if the project fails to meet its objectives.

4. Define the MVP/MVCR.

5. Define project completion.

6. Structure incentives so contractors do better when DoD gets what it needs.

Contracts for conventional Waterfall approaches have been criticized for focusing too heavily on
what happens in a project when the effort diverges from detailed plans and schedules. Often
these plans are mapped out far in advance over long time frames. This adversarial approach to

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
81

accountability often overlooks the importance of common understanding and essential to
cooperation on the first two goals.

In contrast, Agile approaches focus on shared goals and clearly defined roles and responsibilities
for continual cooperation and engagement. Sometimes termed “rules of engagement,” this
management structure helps the contracting parties cooperate with the flexibility to creatively
achieve shared goals. As an example, the Scrum model sets out clear requirements for each of
the following aspects of the project:

• The key project roles (e.g., Product Owner, development team, Scrum Master) are clearly
defined up front.

o The product owner is typically a Government role so they can guide team priorities.
The Scrum Master can be either a Government or contractor role.

o The Team should be dedicated to delivery of specific capabilities/features.

• The key planning and management meetings or “ceremonies” (e.g., grooming the product
backlog, planning the sprint backlog, demonstration of releasable value, and
retrospectives to continuously improve) are preset and defined.

• The key project documentation (e.g., Product Vision, Product Roadmap, product backlog,
sprint backlog, sprint backlog burndown chart) are clearly defined.

The advantage of the Agile approach is that it promotes “real-time” visibility into progress,
issues, and control of the project by the stakeholders, as opposed to periodic updates that may
occur weeks or months apart (e.g., during typical Program Management Reviews (PMR) where
issues may be communicated months after the fact, creating costly rework). Near-term and
routine delivery of working product allows customers or end users to provide meaningful
feedback to guide future effort, and each release generates data that can be used for decision-
making.

7.2 Contract Types

Contract types often follow traditional approaches to purchasing contracts in which the buyers
may outsource complex development to suppliers who can build systems with the desired
capabilities. Contract types include firm fixed price (FFP), time and materials (T&M), cost plus,
or target price, among others. Table 7-1 characterizes the basic contracting types as well as the
potential risks associated with the various models.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
82

Table 7-1. Contracting Types

Firm Fixed Price (FFP) Time and Materials
(T&M)

Cost Plus Target Price

• Fixed specification
• Fixed price and

date
• Changes with a fee
• Risk to Supplier

• No complete
specification

• Price based on rate
• Ends as specified

by customer
• Risk shifted to

customer

• Target specification
• Target date
• Customer pays

Supplier’s cost-plus
profit margin

• Risk mostly shifted
to customer

• Fixed specification
• Fixed date
• Target price
• Negotiated profit

for the Supplier
above the target
price.

• Shared risk, shared
economic
opportunity

7.3 Contracting Maturity Models

The transition from legacy Waterfall to more Agile practices does not happen overnight. It
happens incrementally to substitute new practices for old. It is useful to view the transition on
two levels:

• Agile contracting level: contracts and formal agreements in place between the suppliers
and the Government.

• Agile development level: software engineering practices, and practices that the
developers and the programs follow to build the software.

If a program attempts to transition to Agile development without complementary transition to
Agile contracting, the resulting friction will inhibit progress.

 Air Force Contracting Maturity Model

The Air Force Agile contracting maturity model shows how programs may expect to mature their
contracting practices. The stages are described as crawl, walk, and run. Figure 7-1 shows some
characteristics of each Agile contracting maturity stage and comments on how contracts and
program office functions may evolve as programs mature through these stages.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
83

Source: Derived from DoD DevSecOps CoP

Figure 7-1. Contracting Practices Maturity

To get started, both Government and industry must use the contracting vehicles that are in place
at the time. As their understanding grows, they transition to contracting terms that better
accommodate the flexibility and create incentives for a more collaborative Agile approach. As
the culture shifts, some friction can be expected in areas such a continuous access to user subject
matter experts, restrictions on funding, and continuous availability of and access to test facilities.
As these sources of friction are eliminated out over time an integrated team emerges.

7.4 Agile Software Development using Scrum

Agile software delivery contracts may use Scrum methodology and terminology. The Scrum
framework serves as an example. Many frameworks may be termed “Agile” (e.g., Kanban,
Extreme Programming, Lean Agile, DevOps), but this guide refers to the Scrum framework,
which a program can tailor with other frameworks as appropriate.

The following sections cover considerations in the Agile contracting process:

• Key Roles

o Product Owner
o Development Team
o Scrum Master

• Product Vision

• Product Roadmap

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
84

• Product Backlog

• Sprint Process

o Duration
o Sprint Meetings
o Starting the Next Sprint
o Definition of “Done”

• Project Completion

• Pricing

• Warranties and Indemnities

• Composition of the Development Team

• Termination

• Intellectual Property (IP) Rights

• Dispute Resolution

7.5 Roles and Responsibilities

 The Product Owner

The product owner2 is the primary representative or “voice” of the customer3 and is
responsible for establishing feedback loops with customers/end users, understanding distinct
customer/end user segments, and ensuring clear definition of their needs. The product owner
then communicates the customer’s vision, requirements, and project to the development team.
The product owner also assumes the primary responsibility for the product backlog, including its
initial development and its ongoing grooming over time as well as participation in meetings with
the development team during each sprint, including assessing development items.

2 Terms that have a specific meaning in the Scrum framework appear in boldface on first occurrence.
3 In the context of planning, the Scrum term “customer” refers primarily to the operational user or end
user. At other times, the term may also encompass the acquisition program acting on behalf of the
eventual end user. In DoD the customer will generally be the acquiring command or component, not
necessarily the operational user of the software.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
85

Key points to address:

• The product owner is a representative of the customer (typically the Government) and as
such, the contract should provide for the product owner to be identified by agreements
between the operational user and the program before program execution.

• The product owner must have authority to adapt the product as needed. If they have to
check in with a committee or another leader, you do not have a product owner.

• The supplier may seek some assurance from the customer that the nominated product
owner is suitably experienced in Scrum development projects or has undergone specific
training to acquire the requisite skills.

The contract should set out the key responsibilities of the product owner which include:

• Ownership of the content Product Vision, Roadmap, and Product Backlog and authority
to prioritize work within those items as they see fit.

• Identification of the MVP and MVCR.

• Ongoing revision and re-prioritization of the product backlog as the project develops.

• Participation as the “voice of the customer” in the relevant sprint planning and review
meetings.

 The Development Team

The development team is responsible for the actual development activities within each sprint. As
such, the team needs to be cross-functional and include members who are skilled in areas such as
coding as well as testing, etc. The development team should be experienced in Agile
development projects.

The program must decide whether the development team should be composed of only the
supplier personnel or whether it should also include Government personnel. However, this
approach may be problematic in practice for reasons such as the following:

• The customer may not have sufficient resources to dedicate to the project on a day-to-day
basis.

• The customer may not have personnel with the necessary technical skills to participate
effectively in the development team.

• From a legal perspective, a combined development team raises difficulties in establishing
a clear allocation of risk and liability between the customer and the supplier.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
86

Key points to address:

• Team Composition: During the initial software working group meetings after contract
award, managers and engineers should discuss the assignment of personnel to the team.
Ideally, the contract already addresses team roles and customer participation in the team.
On larger projects, personnel from each CSCI and stakeholders should be included as
appropriate.

• Software Verification and Validation: Who will verify that the software provides the
agreed capabilities, and how will they perform this verification?

• Software Reliability: What are the reliability requirements? What metrics will the team
use to quantify reliability, and what targets must the system achieve or maintain over
time.

• Intellectual Property Rights: Who owns the rights to the software produced? Who owns
the rights to the build environment needed to build the software from source? It is
preferable for the Government to have rights to both the source code of the system and to
the libraries and toolchains that provide the capability to build the software from source.
Use of DoD enterprise software factory assets is one way to achieve this goal and avoid
vendor lock.

 The Scrum Master

The role of the scrum master is perhaps the most challenging to capture in the contract. In broad
terms, the scrum master’s role is like that of a coach or a mentor – ensuring that the development
team and the product owner are working co-operatively and following the Scrum processes.
More importantly, the scrum master is not a project manager. His or her role is not to assign
tasks and measure progress against goals but rather to support the product owner and the
development team. The scrum master may be from the supplier, the Government, or provided by
a third party.

Where the parties are relatively new to Scrum projects and the scrum master’s identity will
depend on a range of factors that include:

• Whether the customer has personnel available and with the right skill set to act as the
scrum master.

• Whether an external consultant will be able to build the necessary relationships with the
product owner and the development team to act as an effective scrum master (and
whether the project budget can justify an additional external resource).

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
87

Key points to address:

• The contract should identify the proposed scrum master (or include a process for the
scrum master to be agreed upon by the parties). The contract should also set out the level
of skill, experience, and qualifications required of any scrum master (such as years of
experience on software development projects using the Scrum methodology).

• The key responsibilities of the scrum master should be set out in the contract.

• The contract should require that the scrum master does the following:

o Is dedicated to the project during the development period (unless otherwise agreed).
o Is not re-assigned from the project without the prior written consent of the Program.

7.6 Product Vision

The starting point for any Agile product is the product vision. This is a statement setting out the
overarching goals of the project and the high-level benefits that are sought. Ideally, the product
vision will have been developed before the contract negotiations start to help the negotiation
team understand the intended result of the project.

Key points to address:

• The product vision should be included in an appendix to the contract as a reference point
for the development of the product backlog and the project.

• In the parlance of the Software Acquisition Pathway, the CNS takes on the function of
the product vision.

• All required Agile ceremonies should be defined in the contract (e.g., backlog grooming,
sprint planning, daily standups, product demonstrations and retrospectives).

7.7 Product Roadmap

A product roadmap is a tool owned by the product owner that illustrates high-level, adaptable
value delivery targets over a designated period. Work items on the product roadmap deliver
stand-alone value to stakeholders along the release cadence leveraged by the team. It tells what
will be delivered and when but leaves the how up to the trusted and empowered team.

Key points to address:

• The product roadmap should be traceable both to the product vision, required capabilities
(like a CNS or requirement document) and to the product backlog.

• The product roadmap should address capability in terms that stakeholders can understand
on which they can place a value.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
88

• The product roadmap should address early delivery of the MVP and the MVCR

• The product roadmap is best supported by automated tools (e.g., Jira) that maintain a
linkage between work items on the backlog delivered over short time intervals (hours,
days) that roll up into capabilities delivered over a longer interval (weeks, months).

• The product roadmap is a basis for ongoing coordination between the product owner,
development teams, end users, and other stakeholders over the course of the effort.

• The product roadmap should be updated frequently to reflect any changes in funding
and mission.

7.8 Product Backlog

The product backlog is the Agile equivalent of a “Statement of Requirements.” It essentially
refers to a prioritized list of items that are to be developed up to the next release. It will continue
to be burned down as requirements are completed and repopulated as new work is elaborated.
One way to imagine the product backlog is to picture it as a “stack” of development items
ordered by importance, with the highest priority items at the top of the stack and the lowest at
the bottom.

The product backlog will be traceable to the product roadmap and product vision, and should
include the following elements:

• Items. The list of epics, features, and/or stories to be developed. As the project develops,
these may also include defects to be rectified and/or areas for further improvement.

• Estimate of Value. An estimate by the product owner of the value to the customer’s
mission of each item presented in relative terms by comparison to other items.

• Estimate of Relative Complexity. An estimate of the complexity each item presented in
relative terms by comparison to other items (typically via story points.)4

• Priority. The priority for each item, taking account of the estimates of mission value and
complexity.

In Agile projects, the development items may be articulated as “User Stories” that capture
succinctly what the end user wants to achieve. The typical format for the User Story is as
follows:

4 The term “relative complexity” appears in place more traditional term “effort” in order to drive
the team away from a focus on time commitments that lead to micromanaging. Instead of saying
“8 hours” or “3 days” we focus on relative complexity measures that may be arrived at
methodically (e.g., via agile planning poker) measured in story points.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
89

“As a <describe end user role>, I want <describe feature or goal> so that <describe reason or
benefit>”. The intended purpose of this format is to keep the description of the development
items short and clear. Additional features of the product backlog are:

• The high priority items should be clearly defined (by contrast, the low priority items may
be more general or vague).

• Items can be re-prioritized by the product owner at any time.

• New items can be added by the product owner from time to time (and prioritized as
necessary).

• Items can also be removed from the product backlog by the product owner at any time.

OUSD(R&E) Lesson Learned. It is common for the product owner and the development team to
devote approximately 1-2 hours of each sprint to grooming and refining the product backlog,
including the preparation of more detailed explanations of individual items, acceptance criteria,
relative complexity, or dividing more general items into smaller and more specific items.

Key points to address in the contract include the following:

• The contract will need to specify how the initial version of the product backlog will be
developed. There are several possible approaches that include:

o The initial product backlog could be developed in parallel with the negotiation of the
contract, in which case, one should not attach it to the contract as it will have the
negative effect of locking in scope and/or schedule based on scope.

o The product backlog could be developed following contract signature. In this case,
the contract could provide for an initial 1-2 day workshop to be held between the
product owner and the development team to discuss the development of the product
backlog and, where necessary, carry out some detailed requirements analysis. The
result should be a product backlog that contains at minimum all work required to
complete the initial release of MVP.

• Once the initial version of the product backlog has been developed, in the first backlog
grooming session, the development team provides the product owner with an estimate of
the relative complexity required to develop each item in the product backlog. It is
important that the team relatively estimates all of the work in the product backlog to
manage and forecast progress toward the upcoming release.

• The contract should require that these estimates are prepared with appropriate care and
skill, and based on fair and reasonable assumptions. It may also be appropriate for this
process to be subject to the dispute resolution procedure in the contract where there is a
dispute between the parties as to whether the estimates from the development team are
appropriate.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
90

• Once the estimates of relative complexity have been finalized, the contract should require
the product owner assign a priority to each item based on the estimates of relative
complexity and mission value.

• All ceremonies, including release planning, backlog grooming, sprint planning,
scrums/standups, sprint demos, and sprint retrospectives should be addressed in the
contract to ensure appropriate resourcing by all parties.

• The contract should also make it very clear that the product owner is free to amend the
product backlog at any time. The exceptions to this are the following:

o The product owner cannot change relative complexity estimates provided by the
team(although they may be discussed during the workshops as discussed above).

o The product owner cannot introduce new work during a sprint or change the scope of
work committed to for the sprint unless there is an emergency (i.e., the product
stopped working for all customers and not “my leadership really wants this story
done now”).

7.9 Sprint Process

 Duration

The parties are free to choose the duration of sprints that will support the project, although these
should be kept relatively short (e.g., 2-4 weeks with a preference to the shorter time frame). It is
a key principle of Scrum that the duration of individual sprints should not be changed, even if the
progress is running behind schedule. Unfinished items should instead be re-inserted into the
product backlog and then reprioritized accordingly.

Key points addressed in the contract include the following:

• The contract should specify the agreed upon duration of each sprint.

• The contract should also include an acknowledgement from both parties that the duration
of an individual sprint cannot be extended.

 Meetings

Each sprint cycle will typically feature five ceremonies: Backlog Grooming, Sprint Planning,
Daily Scrums, Sprint Review/Demo, and a Retrospective.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
91

Source: The MITRE Corporation

Figure 7-2. Scrum Ceremonies

1. Backlog Grooming. Typically occurs the first day of each sprint to get it started.

a. Ensure all known work is expressed as value (Stories not tasks/activities).

b. Add, modify until all known Stories are captured.

c. Prioritize product backlog.

d. Relatively estimate complexity of all Stories

2. Sprint Planning. After the product backlog is groomed, the product owner, development team,
and scrum master will estimate how much work they can complete in the upcoming sprint.
Typically, the team uses past velocity (the average number of story points the team completed in
previous sprints) to predict the amount of work they can commit to in the upcoming sprint. Once
the target velocity is determined, the team selects the stories previously prioritized by the product
owner until the total number of Story Points meets but does not exceed their velocity target. This
work is then pulled out of the Product Backlog and into the Sprint Backlog.

Once the Sprint Planning is complete, to avoid disrupting the team, no other work should be
added to the Sprint Backlog. However, the product owner can add, modify, or reprioritize items
remaining in the Product Backlog as they see fit. At this point, the team is trusted and
empowered to determine “how” to get the work done and how to deliver it in the most efficient
way possible. Therefore, they are not asked to provide tasks/activities and are not asked to
translate Stories or related relative estimates to time-based estimates. The goal is to track value
delivery (completed Stories should provide stand-alone value), not steps toward value delivery
(tasks, activities). Teams that populate either the Product or Sprint Backlog with tasks and

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
92

activities are not operating in an Agile fashion and will greatly inhibit the usage and value of
Agile metrics.

3. Daily Scrum Meetings. After Sprint Planning occurs, the development team will hold a short,
daily meeting to determine ownership of Stories and potential issues/blockers. If facilitated
correctly, this meeting should take 10-15 minutes with up to 10 people. The Scrum Master
facilitates the meeting by asking three questions to each team member. These questions are to be
answered succinctly without providing a “status update” on progress:

• What Stories have you completed since the last meeting?

• What Stories are you working on now?

• Are there any blockers or obstacles to completing your work?

4. Sprint Review/Demo. At the end of each sprint, the product owner, development team, and
scrum master review the Stories completed during the sprint. Each Story completed must adhere
to the Definition of Done (that applies to all stories) and the Acceptance Criteria (that applies to
a specific story). In this meeting, the team demonstrates working product (not wireframes or
screenshots) and the product owner has the final say on if a Story is accepted or rejected. If
rejected the Story goes back into the Product Backlog for grooming and reprioritization.

5. Sprint Retrospective. After the Sprint Review/Demo, the team huddles to evaluate the progress
made during the sprint, the Agile metrics produced, and considers what continuous improvement
experiments. These experiments are captured as enabling Stories in the Product Backlog.
Typically, teams target 1-2 continuous improvement experiments (the ones that will add the most
value) in the next sprint. The team tries to keep this number low to ensure they continue
delivering value to customers but also so they can track better/worse performance back to the
experiment (traceability). To guide a Sprint Retrospective, the team will usually ask the
following questions: 1) What went well that we should continue doing? 2) What didn’t work so
well that we should stop/fix? And 3) What are some things we haven’t tried to improve
performance (start)?

OUSD(R&E) Lesson Learned. Typically, each sprint will follow immediately from the
previous one.

Issues to consider in the contract include the following:

• It is likely that the parties will want to capture the sprint process in the contract in some
form. Consider whether compliance with the sprint process should be contractually
binding.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
93

• In relation to the sprint planning meetings, the contract will need to include a regimen for
the development team to determine how many of the high-priority items identified by the
product owner can be developed during the current sprint (e.g. velocity as an indicator).

• The contract should include an acknowledgement from the customer that, once the items
to be developed in each sprint have been identified, they are fixed for that sprint.

• The contract should set out a regimen for the development of the sprint backlog by the
development team following each planning meeting. It may be useful to include an
agreed format for the sprint backlog in an appendix to the contract (e.g., Jira).

• The contract should require that any future improvements agreed to at a sprint review
meeting are captured in the Product backlog (and that these improvements are reviewed
and prioritized at the next backlog grooming session).

• The contract should provide for the parties to move continuously into the next sprint
cycle. The sprint cycle should continue until either the following occur:

o The project is completed, or
o The contract is terminated.

One question arises is whether compliance with the more detailed aspects of the sprint process
(e.g., daily sprint meetings and/or sprint backlog burndown charts) should be contractually
binding. In some projects, this may be desirable to ensure that the sprint process is properly
followed by the parties. One possible solution is to provide that the key responsibilities of the
parties (such as those issues to consider above) are contractually binding while leaving the more
detailed day-to-day aspects of the sprint process as non-binding.

 Definition-of-Done and Acceptance Criteria

An important Agile principle is that each sprint cycle should result in a “potentially shippable
product increment.” Questions arise as to how the parties will determine whether this has been
achieved.

In Scrum projects, the key to this determination is establishing an agreed upon definition-of-done
that applies to all Stories (e.g., you have to peer review your code) and acceptance criteria that is
applies to a specific story (e.g., the shopping cart story must have shipping costs and tax included
in the total). , which one Agile practitioner described this concept as the “soul” of the entire
process. Some of the elements of a definition-of-done could be as follows:

• The scope of tests to be conducted and passed (e.g., user acceptance tests and non-
functional tests).

• All code has been reviewed (or pair programmed).

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
94

• All coding standards have been met and code has been re-factored where necessary.

• Automated tests were developed so manual testing is not required.

• Necessary documentation has been completed.

Key points to address in the contract include:

• The definition-of-done should ideally be developed in parallel with the negotiation of the
contract.

• The contract should also include an appropriate dispute resolution procedure if there is a
dispute between the parties as to whether any item has been completed in accordance
with the definition-of-done.

 Project Completion

Products are never done but a development project may end when all the items listed in the
product backlog have been developed and released. The list of items in the product backlog at
the end of the project may not be the same as at the start – during the project, the product owner
may have decided that some of the features identified at the start of the project are no longer
needed.

A key issue to be addressed in the contract includes the following:

• Consider contracting for development capacity for a small period of time, or

• The contract should identify criteria for completion.

7.10 Pricing

Program offices, customers, and suppliers are likely to have different perspectives on how an
Agile development project should be priced. In many cases, the program office will be seeking to
agree to a fixed price while the supplier will want to work on a T&M basis. Program Managers
worry that by agreeing to use Agile, which may involve an unknown number of iterations, they
are effectively writing a “blank check” for the project costs with few constraints on cost
escalation.

Counterarguments from Agile proponents include the following:

• Waterfall makes the promise of value delivery far off into the future with larger upfront
investments. This is an incredibly risky way to invest. Instead, Agile provides valuable
working product delivered over a shorter investment horizon, which allows leadership to
make data-driven, micro-investment decisions reduces risk.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
95

• Waterfall leverages documentation and adherence to schedule and budget as the primary
indicators of success. The product itself isn’t delivered until far off in the future and
everyone has to hope until then that it will be valuable. Instead, Agile delivers working
product quickly and routinely incorporates customer feedback to maximize value.

• It is unrealistic to expect any development project, whether based on the Waterfall or
Agile, to execute without changes in scope

• A fixed price model unless it is used to purchase development capacity may erode the
intended benefits of Agile by encouraging the parties to retreat to the traditional approach
of building to rigid specifications and adversarial change management/ contract
negotiation.

• If the program has a fixed budget, Agile maximizes the value of the investment (unlike
many Waterfall projects) by focusing on development of the high-priority items first and
allowing the product owner to deprioritize lower priority (or “nice to have”) items from
the scope.

It is equally unlikely that a pricing model based solely on T&M will drive the right behavior by
the parties. For example, a T&M pricing model is likely to result in disincentives for the supplier
to create realistic estimates and stick to them. In addition, all these issues need to be considered
when determining the pricing model to be used for an Agile development project. In particular,
the parties need to be conscious that pricing needs to be addressed in relation to both individual
iterations and the project as a whole.

Some potential pricing models include the following:

• Fixed Price per Development team: In this instance, you are purchasing software
development capacity. As your knowledge about team cost structures grows you can use
this as an investment lever to ramp capacity up or down.

• Fixed Price per Iteration. Perhaps calculated by reference to the amount of work required
for that iteration or the business value of the relevant development items.

The following are not recommended:

• Fixed Price per User Story. User Stories have different relative complexity and so a
highly complex user story that takes longer to deliver would be paid at the same rate as
an easier, less complex user story.

• Fixed Price for Agreed Number of Stories. Difficult to estimate exact number of stories
required for project because scope can change.

One of the key issues for the supplier in agreeing to a pricing model will likely be revenue
realization. Under a traditional Waterfall contract, the supplier may be able to invoice the full

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
96

contract price upfront whereas, under an Agile contract, the supplier may only be entitled to
invoice the charges that the program is contractually required to pay. This issue may be
particularly relevant if the program is entitled to terminate the contract at the end of each
iteration (or at other agreed upon points) without an obligation to pay the full contract price.

Key points to address in the contract include the following:

• The agreed-upon pricing model will need to be clearly set out in the contract.

• Consider contracting for dedicated development capacity

• Contract clauses will need to include:

o A description of the pricing methodology (e.g., fixed price per iteration),
o When fees can be invoiced,
o Who bears the costs for items which have not been completed during an iteration (or

which have not been met as part of the definition-of-done, or equivalent), and
o The impact of scope reductions or early termination.

• It may also be useful to specify different pricing models for the fixed content of the
MVCR versus the iterative, dynamic content of subsequent batches.

7.11 Warranties and Indemnities

Given the more iterative and collaborative nature of Agile development projects, what warranties
and indemnities can the supplier be expected to give? There are two aspects to consider: (a)
Compliance with specification warranties, and (b) Composition of the development team.

With compliance and warranties, one of the key warranties in a traditional software development
contract is that the finished product will comply with the functional specification; however, one
of the features of Agile is that a comprehensive functional specification is not developed at the
outset of the project. To bridge this gap, it may be useful if on completion of the project, the
supplier prepares a “Product Description” which does the following:

• Contains a detailed description of the design and functions of the completed product, and

• Demonstrates how the completed product is consistent with the product vision
(addressing the Capability Needs Statement, User Agreement, and Value Assessment).

As with a functional specification, the Product Description should be subject to review and
comment by the Program Office and customer, with any disputes between the parties being
subject to the agreed dispute resolution procedure.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
97

With the composition of the development team, one of the potential problems mentioned in
relation to a combined development team is the difficulty in establishing a clear allocation of risk
and liability between the program and the supplier. The problem is particularly acute when it
comes to negotiating warranties and indemnities. If the Program Office and customer personnel
are to be involved in the development activities on a day-by-day basis, then the supplier will be
very reluctant to:

• Offer any substantive warranties that the developed product (or individual product
increments) will be free from defects, fit for purpose or of satisfactory quality, and/or

• Offer a substantive indemnity against third party IP infringement claims.

If the Program Office and customer lack the required skills to participate in the development
team, it may be more appropriate for that team to be composed of only supplier personnel. This
would put the supplier in a better position to offer the above warranties and indemnities.

Key issues to be addressed in the contract include the following:

• The contract should include appropriate warranties from the supplier. These could
include the following:

o The product is sufficiently free from defects and of satisfactory quality, or
o The product will comply with the agreed Product Description.

• If agreed upon by both parties, these warranties could be limited to a defined “warranty
period” as per standard contracting approaches.

• If appropriate, these warranties could be given by the supplier in relation to individual
product increments at the end of each iteration.

• If a “Product Description” will be prepared, the contract should include a regimen for the
development and agreement of this document (including a dispute resolution mechanism
where necessary).

• The contract may also include warranties from the supplier regarding the following:

o Use of OSS by the development team.
o Software Assurance, Safety, Reliability, Security, and Survivability/Resiliency.

• If prescribed in the guidance under FAR 27.201-2(c)(1), procurements should include a
standard FAR patent indemnity clause under FAR 52.227-3.

o This can be supported by standard provisions dealing with conduct of proceedings
and rights for the supplier to modify the product so that it becomes non-infringing.

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
98

7.12 Termination

When should either party be entitled to bring an end to the project? Is it realistic in a project of
any size for the customer (and potentially the supplier) to have the right to walk away from the
project after each iteration? Arguably, this is an inherent right for the customer in an Agile
project – at any time, the product owner could amend the product backlog to de-scope any
outstanding items and declare the project complete. On the other hand, the supplier may have
invested significant time and resources in dedicating a development team to the project and feel
that it is entitled to some form of compensation if the project is cancelled earlier than expected.

Key issues to be addressed in the contract include the following:

• Address each party’s right to terminate the project.

• Whether the Program Office has a right to terminate after each iteration (or possibly after
defined “groups” of iterations).

• Include standard rights to terminate immediately, such as material breach or insolvency.

• Address the consequences of termination, including the delivery to the Program Office /
customer of work-in-progress including software code and copies of other working
materials in their current state of development.

• Include conditions and terms to include compensation if the contract is terminated early
(e.g., some or all the profit that the supplier may have made from future iterations).

7.13 Intellectual Property Rights

What are the Government’s license rights to the software developed or delivered? What are the
Government’s license the rights to the build environment needed to build the software from the
source code? Presuming that this approach is supported by the acquisition strategy and product
support strategy, it is preferable that the Government requires delivery of source code, libraries,
and toolchains that provide the capability to build the software from source code.

In addition, the Government should ensure (either through standard DFARS clauses under
procurement contracts, IP clauses in other types of agreements, or by negotiation with the
contractor) that the Government is granted license rights that permit the Government to use,
modify, and distribute software deliverables in a manner that enables the acquisition goals
established in the acquisition strategy and product support strategy. Use of DoD enterprise
software factory assets is one way to achieve this goal and avoid vendor lock. These can be
complex IP considerations, which should be first vetted and coordinated with the cognizant IP
SME (e.g., experts from the DoD IP Cadre).

Key issues to be addressed in the contract include the following:

7. Contracting for Software Engineering

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
99

• Identify the respective supplier and the IP license rights necessary to support the
Government’s individual product increments and the fielding of the final developed
product.

o The supplier may be required to provide copies of the relevant source code to the
Government.

o Include appropriate licenses that meet the Government’s needs as established in the
Acquisition Strategy (AS) and Post Production Support (PSS), based on the Board
Contract of Appeals (BCA) determination.

o Identify whether software escrow arrangements5 or other licensing arrangements may
satisfy future product supportability needs.

• Data and IP rights should align with the Professional Services Schedule (PSS).

o Even if DoD is not the developer of the software (e.g., tools, libraries, containers)
then may require access to source code for validation and verification (V&V) and
software assurance (SwA) purposes.

o If PSS requires DoD to buy containers and libraries so that software can share with a
third party, then DoD needs rights to that code.

• In any event, the contract should require delivery of the product vision and the product
backlog and associated license rights that enable the acquisition strategy and product
support strategy

7.14 Dispute Resolution

Given the more collaborative approach to agile projects, it will be important for the contract to
include a procedure that promotes the quick and efficient resolution of disputes while
maintaining good working relationships between the parties.

It may be that this can be best achieved through the combination of the following:

• Informal discussions by the parties, escalating up to senior management.

• Where this process does not resolve the dispute, determination of technical or financial
issues by an independent expert with only the most serious or intractable disputes being
referred to arbitration or court proceedings. Mediation should also be considered by the
parties as a means of resolving disputes in an efficient and “non-destructive” manner.

5 Escrow agreements require deferred delivery of technical data or software upon the occurrence of specific events
indicated in the contract (e.g., the contractor's cease of sale or support of products or bankruptcy).

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
100

8 Artificial Intelligence and Machine Learning

• The importance of AI/ML is growing in defense systems and has potential to become
critical to dominance on the battlefield.

• Machine learning enables computers to learn from data and data relationships without
being explicitly programmed.

This section differs from the other sections in this guide in that artificial intelligence (AI) and
machine learning (ML) (AI/ML) is not yet in widespread deployment across the DoD.
Consequently, addressed is more background on AI/ML as a field and the Department’s strategic
approach and vision for deploying these technologies. This vision lays out a path for
transitioning AI/ML software into much broader application across the Department.

The importance of AI/ML is growing in defense systems. The promise of radical advances in the
ability to perceive and react to complex situations offers compelling advantages to the
warfighting mission. The purpose of this section is to demonstrate that software engineering for
systems incorporating AI/ML may differ in ways that cause adjustments to in-place practices and
processes. This information should assist in the adaptation of software engineering to the special
nature of AI/ML development and deployment.

The essential way in which ML systems differ from traditional software applications is their
reliance on data. Data collection and curation is the critical element driving the pace of software
development. In fact, for many applications, use of the Software Pathway will be infeasible for
schedule reasons if the curated data is not prepared before entry into the pathway.

The AI/ML infrastructure and processes delineated here harmonize with the Agile/DevSecOps
software engineering and continuous delivery approaches described in the preceding sections.
Software engineering practices (including CI/CD pipelines, small batch sizes, iterative
development, automated testing, emphasis on rapid deployment, and feedback gathered from
operations) are all key enablers of the Department’s AI/ML development and deployment
strategy.

This section presents:

• Background on AI/ML, elaborating on what it is and how AI/ML relates to DoD’s
warfighting mission.

• How the Chief Digital and Artificial Intelligence Office (CDAO) is positioned to help
programs transition AI/ML research into fielded capabilities.

• An overview of the OUSD(R&E) AI Software Roadmap to familiarize the reader with a
spectrum of technologies that fall under the umbrella of AI/ML.

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
101

• A conceptual model of how AI/ML development aligns with the CI/CD pipeline
construct as part of a DevSecOps approach featuring short cycle iteration and continuous
feedback from development to operations.

8.1 Background on Artificial Intelligence and Machine Learning

AI is the pursuit of the ability of machines to perform tasks that normally require human
intelligence or the programmed ability to process information. AI focuses on aggregating ML,
Planning, Expert Systems, Natural Language Processing, Speech, Robotics, and Vision to create
a “Decision Platform” independent of human intervention (Crisman 2020). This taxonomy has
evolved over many years, captured in Figure 8-1.

Source: JAIC 2020

Figure 8-1. AI Taxonomy

The definition of AI now encapsulates ML, or techniques that give computers the ability to learn
without being explicitly programmed to do so. These techniques allow data scientists to develop
AI applications rapidly with data. The speed at which applications can be developed depends
upon the prior existence of suitable data, and/or the collection and preparation of new data.
Aggregating both data and ML creates a model for information/data processing with mission
implications. This combination, known as “Deep Learning” (DL), allows AI practitioners to
develop complex AI applications with larger data sets or “big data.”

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
102

ML enables computers to learn from data and data relationships without being explicitly
programmed. The best way to understand ML is to contrast it with an older approach to AI,
human-centric knowledge systems. Knowledge systems or expert systems are AI systems that
use traditional, rules-based software to codify subject matter knowledge of human experts into a
long series of programmed “if given x input, then provide y output” rules. For example, the AI
chess system Deep Blue, which defeated the world chess champion in 1997, was developed in
collaboration between computer programmers and human chess grandmasters. The programmers
wrote (literally typed by hand) a computer code algorithm that considered many potential moves
and countermoves reflecting rules for strong chess play given by human experts (Greenemeier
2017).

ML includes the “No Free Lunch” theorem, which means that no one ML algorithm works best
for every problem, especially relevant for predictive modeling. For example, one cannot say that
neural networks are always better than decision trees or vice versa. There are many factors to
consider, such as the size and structure of the data set. As a result, many different algorithms
should be applied to the problem, while using an actual, curated test set of data to evaluate
performance and identify the highest performing algorithm to be deployed.

Currently, ML is the preferred “go to” approach in the development of AI applications, which
streamlines and optimizes the software development process carried out by humans. Realized
benefits of ML include:

• Better performance than that provided by humans.

• Shortened development time of new code, i.e., code potentially developed in minutes.

• Expansion of new problem sets.

Achievement of ML is closely related to statistics and requires “big data” for successful task
completion, and data that is of high quality. Rapid and successful development moving forward
will require the capture of the right and accurate data in the right way and connecting that data to
the right team(s) for synthesis and development.

With all the positives, ML is vulnerable to errors in modeling and simulation of mission
problems, which can lead to errors in AI reasoning solutions. ML is also vulnerable to biases and
inaccuracies in training data, which can lead to biases and inaccuracies in trained ML models. In
addition, securing and preserving ML integrity can be both challenging and time consuming; ML
is vulnerable to adversarial attacks on training data sets, attacks on model parameters, attacks on
model outputs, and alterations to the environment such as deception (NISTIR 8269 (draft) 2019).

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
103

8.2 Chief Digital and Artificial Intelligence Office (CDAO) Strategy

The DoD’s Chief Digital and Artificial Intelligence Office (CDAO) was established to preserve
and expand U.S. military advantage in support of the Department’s 2018 National Defense
Strategy. As a primary executing body, it is tasked to accelerate the delivery of AI-enabled
capabilities, scale the Department-wide impact of AI, and synchronize DoD AI activities to
expand Joint Force advantages.

The CDAO is responsible for the acceleration of DoD’s adoption of data, analytics, and AI to
generate situational advantages. The goal is to use AI to solve large and complex problem sets
that span across the DoD, then ensure real-time access to ever-improving libraries of data sets
and tools. The CDAO’s holistic approach includes activities to:

• Accelerate the delivery and adoption of AI.

• Scale the impact of AI across the Department.

• Defend U.S. critical infrastructure from malicious cyber activity that alone, or as part of a
campaign, could cause a significant cyber incident.

• Establish a common foundation that enables decentralized execution and
experimentation.

• Develop partnerships with industry, academia, allies, and partners.

• Cultivate a leading AI workforce.

• Lead in military AI ethics and safety.

The CDAO delivers AI capabilities to the Department through two categories: National Mission
Initiatives (NMIs) and Component Mission Initiatives (CMIs):

• NMIs are broad, joint, and cross-cutting AI/ML challenges that the CDAO must tackle
using a cross-functional team approach.

• CMIs are component-specific and solve a particular problem. CMIs will be run by the
components, with support from CDAO in several ways that include funding, data
management, common foundation, integration into programs of record, and sustainment.

8.3 OUSD(R&E) Artificial Intelligence Software Roadmap

The DoD AI Strategy (DoDAIS 2018) (JAIC 2020) defines AI as the “ability of machines to
perform tasks that normally require human intelligence.” This definition includes decades-old
application, such as aircraft autopilots, missile guidance, and signal processing systems. Though
many AI technologies are old, there have been technological breakthroughs over the years that
have greatly increased the diversity of applications where AI is practical, powerful, and useful.

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
104

Most of the breakthroughs in AI over the past decade have focused on ML. The ability of ML to
provide applications to the Department is based on what it can affect in terms of functions and
how these functions can be used during software development for warfighter capabilities. ML
can be thought of as applications in “Unsupervised,” “Supervised,” and “Reinforcement”
learning, all of which provide specific functions associated with each area. Source: JAIC 2020

Figure 8-2 illustrates and provides bullet points for these three learning types.

Source: JAIC 2020

Figure 8-2. Machine Learning Composition Domain

As part of the software system, data analysts and software developers can update human AI
systems at the edge because AI and ML is part of the overall software system architecture. Edge
computing is defined as client data processed at the periphery of the network, as close to the
originating source as possible.

Within a system of systems (SoS), military, business, medical, and other DoD operations are part
of its composition. Within the human-AI system, each system represents a user-machine step in
the SoS workflow. Within the application and microservices realm, AI is a data processing
microservice in a software application that is embedded in a system. Figure 8-3 illustrates this
concept, providing capabilities within software for supporting the warfighter and the
Department’s missions.

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
105

Source: JAIC 2020

Figure 8-3. AI and ML as Part of a Software System

High-quality ML requires expertise to be effective, useful, and implementable. Human resource
attributes include personnel who:

• Understand data and data processing mathematically; typically, AI/computer scientists,
data scientists, or ORSA (Operations Research and Systems Analysis) analysts.

• Understand how to make machines collect, store, retrieve, and process data efficiently
and securely; typically, data/software/cyber engineers.

• Understand the meaning of source data and its use for tactics, techniques, and procedures;
typically, data users and operational SMEs.

The DoD AI strategy (DoDAIS 2018) is based on the notion that by combining mission
platforms, having a common foundation, the right workforce with the right skills and training,
forged partnerships with commercial, academic, and international allies and partners, as well as a
solid policy that has leadership in military ethics and AI safety, AI-enabled capabilities will be
achieved through the rise from experiments at the “forward edge” discovered by the users.
Mission platforms need to deliver AI-enabled capabilities that address key missions and allow
for experimentation and development at the edge. The common foundation must scale AI’s
impact across the DoD by enabling decentralized development and experimentation.
Development of the workforce that supports the AI strategy must cultivate a leading AI
workforce for rapid experimentation and an iterative, risk-informed approach to AI
implementation.

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
106

8.4 Vision for Accelerated, Continuous Delivery of AI/ML Capability

Accelerating AI adoption requires a common foundation that has building blocks for software
and AI practitioners to build mission platforms and applications; e.g., Intel, Operations, and
Cyber. Source: JAIC 2020

Figure 8-1 illustrates this AI adoption layer model.

Source: JAIC 2020

Figure 8-1. AI Adoption Layer Model

Success starts with having a viable infrastructure that uses the commercial Cloud and “cloudlet”
services or Infrastructure as a Service (IaaS), as well as DoD High Performance Computing
(HPC) and other DoD-owned systems. The Department envisions common software services
such as identity management services, data management, DevSecOps, mapping, visualization,
feature extraction, and ML training.

Using Mission Platforms as the “backend” that enables rapid ML, application development, and
testing, supports acceleration of AI adoption across the ecosystem. This is accomplished by
understanding several components:

• Microservices Software Architecture, and the use of

o Documented APIs for all software services supporting a defined multi-user mission
workflow.

• Unique Testing Needs, and the need to

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
107

o Reserve test data that was not used in training.
o Assess adversarial countermeasures that may defeat ML recognition by creating small

differences in inputs.
o Understand and explain why the ML system behaves as it does.
o Understand the strict boundary between fully autonomous and human in the loop

(HITL) decisions.

• Mission-specific Data and Software Services, using

o Raw and processed sensor data.
o Sensor calibration and signal processing services.

• Mission-specific AI/ML Development Services, and the use of

o Simulations and game engines.
o Training data set, algorithms, and models.
o AI/ML testing harnesses to include ethics and vulnerability measures.

• Incremental ATO on mission end points, and the use of

o DoD Cloud for business services.
o Cloudlets for contested logistics.
o DoD vehicles or devices for military operations.

Within the secure DevSecOps process associated with the ATO, the Department’s vision
foresees an active effort to develop AI/ML software in conjunction with the ATO accreditation
process for the deployment on the cloud instances.

Figure 8-5 illustrates this closed-loop input/output, feedback process.

Source: Adapted from OUSD(R&E) DoD-Wide Software S&T Strategy 2021

Figure 8-2. AI Process Automation to the Edge

8. Artificial Intelligence and Machine Learning

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
108

AI innovation requires continual updates to user applications and ML resources. As new data
becomes available, it may be added to curated training data sets. These data sets enable new ML
models to be rapidly retrained, tested, and deployed, expanding the capabilities of the system.
When new AI/ML vulnerabilities or biases are uncovered, the AI/ML and testing services can be
updated to screen for those vulnerabilities and biases.

Implementing mission platforms and scaling AI and ML from research requires inputs and
feedback from the various stakeholders involved in the process. These stakeholders include AI
researchers, engineers, and SMEs; developers and analysts; and operators and users.

• AI researchers provide new AI software methods and data assurance methods.

• Engineers and SMEs provide a common foundation and mission platform.

• Developers and analysts provide daily ML microservices, applications, and application
updates.

• Operators and users provide daily operational data, and ML output and application
feedback.

8.5 Summary

As AI/ML grow in acceptance the Department must meet a collection of new challenges:

• Validation and verification of capability when an AI/ML changes its behavior

• Curation of high quality training data reflective of operational environments

• Ethical concerns regarding what decisions get delegated to AI/ML systems.

• Workforce competency development and training

• Transitioning AI/ML research into new capabilities in operational systems

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
109

Glossary

Term Definition

Adaptive Acquisition
Framework (AAF)

A series of acquisition pathways to enable the workforce to tailor
strategies to deliver better solutions faster. The AAF pathways provide
opportunities for Milestone Decision Authorities, Decision Authorities,
and Program Managers to develop acquisition strategies and employ
acquisition processes that match the characteristics of the capability
being acquired.

Application Programming
Interface (API)

A set of definitions and protocols for building and integrating application
software.
Source: https://www.redhat.com/en/topics/api/what-are-application-
programming-interfaces

A system access point or library function that has a well-defined syntax
and is accessible from application programs or user code to provide
well-defined functionality.
Source:
https://csrc.nist.gov/glossary/term/application_programming_interface
NIST SP 1800-16C
NIST SP 1800-21C
NIST SP 5153 under Application Program Interface

Artifact Software Artifact: A consumable piece of software produced during the
software development process. Except for interpreted languages, the
artifact is or contains compiled software. Important examples of artifacts
include container images, virtual machine images, binary executables,
jar files, test scripts, test results, security scan results, configuration
scripts, Infrastracture as Code, documentation, etc. Software artifacts
are usually accompanied by metadata, such as an identifier, version,
name, license, dependencies, build date, and time. Items such as
source code, test scripts, configuration scripts, build scripts, and
infrastructure as code are checked in to the source code repository, not
the artifact repository, and are not considered artifacts.

Artifact Repository: A system for storage, retrieval, and management of
artifacts and their associated metadata. Programs may have separate
artifact repositories to store local artifacts and released artifacts. It is
also possible to have a single artifact repository and use tags to
distinguish the content types.

Backend The part of a computer system or application that is not directly
accessed by the user, typically responsible for storing and manipulating
data.

Backlog Program backlogs that identify detailed user needs in prioritized lists.
The backlogs allow for dynamic reallocation of scope and priority of
current and planned software releases. Issues, errors, and defects
identified during development and operations should be captured in the
program’s backlogs to address in future iterations and releases.

Bare Metal/Bare Metal
Server

A traditional physical computer server dedicated to a single tenant and
which does not run a hypervisor. This term is used to distinguish
physical computer resources from modern forms of virtualization and
Cloud hosting.

https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://csrc.nist.gov/glossary/term/application_programming_interface

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
110

Term Definition

Binary/Binary File A data file or computer executable file that is stored in binary format (as
opposed to text), which is computer-readable, but not human-readable.
Examples include images, audio/video files, exe files, and jar/war/ear
files.

Build (Software) The process of creating a set of executable code that is produced by
compiling source code and linking binary code.

The term build may also refer to the end product created by that
process.

Build Tools (Software) Tools used to retrieve software source code, build software, and
generate artifacts.

Capability Higher level solution typically spanning multiple releases. A capability is
made up of multiple features to facilitate implementation.

Capability Needs Statement
(CNS)

A high-level capture of mission deficiencies, or enhancements, to
existing operational capabilities, features, interoperability needs, legacy
interfaces, and other attributes that provides enough information to
define various software solutions as they relate to the overall threat
environment.

Competency An observable, measurable pattern of knowledge, abilities, skills, and
other characteristics that individuals need to perform work roles or
occupational functions successfully. They are categorized by:

 non-technical. Demonstrate the “soft skills,” (ability to relate to
others) or personal attributes associated with successful performance of
current and future job tasks or mission requirements as defined in DoDI
1430.16 [...]

 technical. Associated with a specific occupation or function to
successfully perform the job tasks required. These competencies reflect
domain-specific requirements and are associated with analysis of
occupational job groups or families, occupational series, DoD critical
functions particular groups of jobs. These competencies also refer to
specific occupational skills gained from education or training or which
are based on a particular area of expertise.

Source: DoDI 1400.25 Volumn 250, June 2016

Continuous Authorization to
Operate (cATO)

Concept of building software security controls into the software
development methodology so the authority to operate process (as with
the testing process) is completed alongside development. If designed
correctly, an authority to operate is nearly guaranteed once the software
is ready for release.

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
111

Term Definition

Continuous
Integration/Continuous
Delivery (CI/CD)

CI/CD Orchestrator: A tool that enables fully or semi-automated short-
duration software development cycles through integration of build, test,
secure, store artifact tools.

CI/CD Pipeline: A set of tools and the associated process workflows to
achieve continuous integration and continuous delivery with build, test,
security, and release delivery activities, which are steered by the CI/CD
orchestrator and automated as much as practice allows.

CI/CD Pipeline Instance: A single process workflow and the tools to
execute the workflow for a specific software language and application
type for a project. The pipeline process is automated as much as
practicable.

Cloud Native Computing
Foundation (CNCF)

An open source software foundation dedicated to making cloud native
computing universal and sustainable. Cloud native computing uses an
open source software stack to deploy applications as microservices,
packaging each part into its own container, and orchestrating those
containers to optimize resources. Cloud native technologies enable
software developers to build products faster.
Source: https://www.cnfc.io/

CNCF-Certified Kubernetes

Kubernetes that has been endorsed by the CNCF Certified Kubernetes
Conformance Program. Software conformance ensures that every
vendor’s version of Kubernetes supports the required Application
Performance Interfaces. Conformance guarantees interoperability
among Kubernetes from different vendors. Most of the world’s leading
vendors and Cloud computing providers have CNCF-certified
Kubernetes offerings.

Code Software instructions for a computer, written in a programming
language. These instructions may be in the form of either human-
readable source code or machine code, which is source code that has
been compiled into machine-executable instructions.

Code Coverage A measure used to describe what percentage of application code is
exercised when a test suite runs. A higher percentage indicates more
source code executed during testing, which suggests a lower chance of
containing undetected bugs.

Configuration Management Capability to establish and maintain a specfic configuration within
operating system and applications.

Container A standard unit of software that packages code and its dependencies
down to, but not including, the OS. The container is a lightweight, stand-
alone, executable package of software that includes everything needed
to run an application except OS: code, runtime, system tools, system
libraries, and settings.
Source: https://docker.com/resources/what-container

A method for packaging and securely running an application within an
application virtualization environment. Also known as an application
container or a server application container.
Source: (NIST SP 800-190 2017)

https://www.cnfc.io/
https://docker.com/resources/what-container

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
112

Term Definition

Continuous Build An automated process to compile and build software source code into
artifacts. The common activities in the continuous build process include
compiling code, running static code analysis such as code style
checking, binary linking (in the case of languages such as C++), and
executing unit tests. The outputs from continuous build process are
build results, build reports (e.g., the unit test report, and static code
analysis report), and artifacts stored in the artifact repository. The trigger
to this process could be a developer code commit or a code merge of a
branch into the main trunk.

Container Orchestration The automation of much of the operational effort required to run
containerized workloads and services. This includes a wide range of
activities software teams need to manage a container’s lifecycle,
including provisioning, deployment, scaling (up and down), networking,
load balancing, and more.
Source: https://vmware.com/topics/glossary

Continuous Delivery An extension of continuous integration to ensure that a team can
release the software changes to production quickly and in a sustainable
way. The additional activities involved in continuous integration include
release control gate validation and storing the artifacts in the artifact
repository, which may be different than the build artifact repository. The
trigger to these additional activities is successful integration, which
means all automation tests and security scans have been passed. The
human input from the manual test and security activities should be
included in the release control gate. The outputs of continuous delivery
are a release go/no-go decision and released artifacts, if the decision is
to release.

Continuous Deployment An extension of continuous delivery. It is triggered by a successful
delivery of released artifacts to the artifact repository. The additional
activities for continuous deployment include, but are not limited to,
deploying a new release to the production environment, running a
smoke test to make sure essential functionality is working, and a
security scan. The output of continuous deployment includes the
deployment status. In the case of successful deployment, it also
provides a new software release running in production. On the other
hand, a failed deployment causes a rollback to the previous release.

Continuous Engineering A practice that merges requirements, design, development, quality
assurance, security, test, integration, delivery, and deployment into a
single, continuous set of processes to continually, or iteratively, provide
working functional systems to internal and external users users and to
deliver high-quality software more frequently.

Continuous Integration A step further than continuous build. Continuous integration extends
continuous build with more automated tests and security scans. Any test
or security activities that require human intervention can be managed by
separate process flows. The automated tests include but are not limited
to integration tests, a system test, and regression tests. The security
scans include but are not limited to dynamic code analysis, test
coverage, dependency/bill of material (BOM) checking, and compliance
checking. The outputs from continuous integration include the
continuous build outputs, plus automation test results and security scan
results. The trigger to the automated tests and security scans is a
successful build.

https://vmware.com/topics/glossary

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
113

Term Definition

Continuous Integration /
Continuous Delivery
(CI/CD) Pipeline

A collection of DevSecOps tools, with which the DevSecOps process
workflows can be created and executed. DevSecOps tools are
composed of a tailored series of software products configured to
integrate end-to-end software definition, design, development, test,
delivery, and potentially deployment in a highly automated and secure
way.

Continuous Monitoring An extension of continuous operation. Operators are supported by
automated services that continuously monitor and inventory all system
components, monitors the performance and security of all the
components, and audit and log system events.

Continuous Operation An extension of continous deployment. Continuous operation is
triggered by successful deployment. The production environment
operates continuously with the latest stable software release. The
activities of continous operation include but are not limited to system
patching, compliance scanning, data backup, and resource optimization
with load balancing and scaling (both horizontal and vertical).

Cybersecurity

The art of protecting networks, devices, and data from unauthorized
access and the practice of ensuring confidentiality, integrity, and
availability of information. The term covers preventative methods used
to protect software from threats that may exploit weaknesses, and
vulnerabilities in the software.

Cycle Time The elapsed time from when work is started until the time the work has
been completed.

Decision Authority (DA) The official responsible for oversight and key decisions of programs that
use the software acquisition pathway and related component policies.
The DA designates a Program Manager (PM) and supports the PM in
tailoring and streamlining processess, reviews, and decisions to enable
speed of capability delivery. The DA may be the Defense Acquisition
Executive, Component Acquisition Executive, or the Program Executive
Officer, or other official designated by the Component Acquisition
Executive (CAE).

Defense Business System
(DBS)

Defined in Title 10 USC 2222.

Defect (Contained) A defect that is introduced, detected, and repaired within a given
development stage before moving to a later stage.

Defect (Escaped) A defect that is introduced in a given development stage but not
detected or repaired until a later stage.

Delivery The process by which released software is placed into an artifact
repository where it becomes available for deployment to the operational
environment.

Deployment The process by which released software is downloaded and deployed to
the operational environment.

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
114

Term Definition

DevSecOps An organizational software engineering culture and practice that aims at
unifying software development, security, and operations. The main
characteristic of DevSecOps is to automate, monitor, and apply security
at all phases of the software lifecycle: plan, develop, build, test, release,
deliver, deploy, operate, and monitor. In DevSecOps, testing and
security are shifted left through automated unit, functional, integration,
and security testing. This shift differentiates DevSecOps from other
methods of software development in that security and functional
capabilities are tested and built simultaneously.

DevSecOps Phase Any of eight phases of software development, security, and operation
activities in the software life cycle. Each phase completes a part of
related activities using tools.

Digital Engineering (DE) An integrated digital approach that uses authoritative sources of
systems' data and models as a continuum across disciplines to support
life cycle activities from concept through disposal. Definition source:
“DAU Glossary: Digital Engineering,” DAU, 2017,
https://www.dau.edu/glossary/Pages/Glossary.aspx.

DoD Centralized Artifact
Repository (DCAR)

A repository holding the hardened container images of DevSecOps
components that DoD mission software teams can use to instantiate
their own CI/CD pipeline. Also holds the hardened containers for base
operating systems, web servers, application servers, databases,
Application Performance Interface (API) gateways, and message
busses for use by DoD mission software teams as a mission system
deployment baseline. These hardened containers, along with security
accreditation reciprocity, greatly simplify and speed the process of
obtaining an Approval to Connect (ATC) or Authorization to Operate
(ATO).

Embedded Software Software with a dedicated function within a larger mechanical or
electrical system, often with real-time computing constraints, or software
applications embedded in a platform (e.g., air vehicle, ground vehicle, or
ship).

End User The persons who will ultimately use the software solution. The term end
user thus distinguishes the user for which the product is designed from
other users who are making the product possible for the end user.
Often, the term user would suffice.

In the context of Agile/DevSecOps end users convey operational
concepts, requirements, and needs, participate in continuous testing
activities, and provide feedback on developed capabilities.

Enterprise Services A term for services that have the proper scope to play a productive role
in automating business processes in enterprise computing, networking,
and data services. Enterprise services include technical services such
as Cloud infrastructure, software development pipeline platforms,
common containers/virtual machines, monitoring tools, and test
automation tools. Responsibility for these functions is generally above
the Program Manager.

Environment A runtime boundary within which a software component may be
deployed and executed. Typical environments include development,
integration, test, pre-production, and production.

https://www.dau.edu/glossary/Pages/Glossary.aspx

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
115

Term Definition

Factory

Software Factory: A software assembly plant that contains multiple
pipelines, which are equipped with a set of tools, process workflows,
scripts, and environments, to produce a set of software-deployable
artifacts with minimal human intervention. It automates the activities in
the develop, build, test, release, and deliver phases. The software
factory supports multi-tenancy.

Software Factory Artifact Repository: A collection of artifacts pulled from
DCAR as well as locally developed artifacts to be used in DevSecOps
processes. The artifacts include, but are not limited to, virtual machine
(VM) images, container images, binary executables, archives, and
documentation. It supports multi-tenancy. A program could have
separate artifact repositories to store local artifacts and released
artifacts. It is also possible to have a single artifact repository and use
tags to distinguish the contents.

Feature A service or distinguishing characteristic of a software item (e.g.,
performance, portability, or functionality) that fulfills a stakeholder need
and includes benefit and acceptance criteria within one release.
Features are used to complete capabilities and are composed of
multiple stories (or tasks, use cases, etc.).

Government Developmental
Testing

Testing conducted by the Government to verify and demonstrate how
well the system under development meets its technical compliance
requirements, to provide data to assess developmental risk for decision
making, and to ensure that the technical and support problems identified
in previous testing have been corrected.

Human Systems Integration The management and technical discipline of planning, enabling,
coordinating, and optimizing all human-related considerations during
system design, development, test, production, use and disposal of
systems, subsystems, equipment, and facilities.
Source: https://www.sebokwiki.org/wiki/Human_Systems_Integration

Hypervisor A program used to run and manage one or more virtual machines on a
computer. A hypervisor allows one host computer to support multiple
guest VMs by virtually sharing its resources, such as memory and
processing.
Source: https://vmware.com/topics/glossary/content/hypervisor.html

https://www.sebokwiki.org/wiki/Human_Systems_Integration
https://vmware.com/topics/glossary/content/hypervisor.html

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
116

Term Definition

Immutable Infrastructure An infrastructure paradigm in which servers are never modified after
they are deployed. If something needs to be updated, fixed, or modified
in any way, new servers built from a common image with the
appropriate changes are provisioned to replace the old ones. After they
are validated, they are put into use and the old ones are
decommissioned.

The benefits of an immutable infrastructure include more consistency
and reliability in the infrastructure and a simpler, more predictable
deployment process. It mitigates or entirely prevents issues that are
common in mutable infrastructures, like configuration drift and
snowflake [no two alike] servers. However, using it efficiently often
requires comprehensive deployment automation, fast server
provisioning in a cloud-computing environment, and solutions for
handling state or ephemeral data like logs.

Source: https://www.digitalocean.com/community/tutorials/what-is-
immutable-infrastructure

Infrastructure as Code The management of infrastructure (networks, virtual machines, load
balancers, and connection topology) in a descriptive model, using the
same versioning that the DevSecOps team uses for source code.
Infrastructure as Code evolved to solve the problem of environment drift
in the release pipeline.

Kubernetes An open source system for automating deployment, scaling, and
management of containerized applications. It was originally designed by
Google and is now maintained by the CNCF. Many vendors also
provide their own branded Kubernetes. It works with a range of
container runtimes. Many Cloud services offer a Kubernetes-based
platform as a service.

Lockdown The closing or removal of weaknesses and vulnerabilities from software.

Microservices Both an architecture and an approach to software development in which
a monolithic application is broken into a suite of loosely coupled
independent services that can be altered, updated, or taken down
without affecting the rest of the application.

Mission Application
Platform

The underlying hosting environment resources and capabilities, plus
any mission program enhanced capabilities that form the base upon
which the mission software application operates.

Mission Operations The real-world environment within which the needed military capability
is required and must perform.

Model-Based Systems
Engineering (MBSE)

Model-based systems engineering (MBSE) is the formalized application
of modeling to support system requirements, design, analysis,
verification and validation activities beginning in the conceptual design
phase and continuing throughout development and later life cycle
phases.”
Source: (INCOSE 2023)

https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
117

Term Definition

Modern Software
Development Practices

Practices (e.g., Lean, Agile, DevSecOps) that focus on rapid, iterative
development and delivery of software with active user engagements.
Small cross-functional sofware development teams integrate planning,
design, development, testing, security, delivery, and operations with
continuous improvement to maximize automation and user value.

Modularity The degree to which a system’s components may be separated and
recombined, often with the benefit of flexibility and varity in use.

Source: (Farley, Modern Software Engineering 2022) page 105

Monolithic A monolithic application is a single-tiered software application in which
the user interface and data access code are combined into a single
program from a single platform.

Minimum Viable Capability
Release (MVCR)

The initial set of features suitable to be fielded to an operational
environment that provides value to the warfighter or end user in a rapid
timeline. The MVCR delivers initial warfighting capabilities to enahance
some mission outcomes. The MVCR is analogous to a minimum
marketable product in commercial industry.

Source: DoDI 5000.87, October 2, 2020

Minimum Viable Product
(MVP)

An early version of the software to deliver or field basic capabilities to
users to evaluate and provide feedback. Insights from MVPs help
shape, scope, requirements, and design.
Source: DoDI 5000.87, October 2, 2020

Node (or Cluster Node) In the context of CNCF Kubernetes a node is a worker machine in
Kubernetes cluster. The node may be a VM or physical machine,
depending on the cluster. Each node contains the services necessary to
run pods and is managed by the master components, including the
node controller. A node is also referred to as a cluster node.

Open Container Initiative
(OCI)

An open governance structure for the express purpose of creating open
industry standards around container formats and runtime.
Source: https://www.opencontainers.org

OCI-Compliant Container Container image that conforms with the OCI Image Specification.

OCI-Compliant Container
Runtime

Software that executes containers and manages container images on a
node. OCI-compliant container runtime must conform with the OCI
Runtime Specification.

Operational Acceptance A decision by one or more military units to use the software in military
operations.

Operational Release A software release that has been approved for operational use.

Operational Users See End User.

Orchestration In the context of containerized software, the automated configuration,
coordination, and management of containers and container instances to
achieve a desired effect.

Platform A group of resources and capabilities that form a base upon which other
software-enabled capabilities or services are built and operated.

Pod A group of containers that run on the same CNCF Kubernetes
worker node and share libraries and OS services.

https://www.opencontainers.org/

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
118

Term Definition

Product Owner An active member of the software development team working closely
with the user community to ensure that the requirements reflect the
needs and priorities of the user community and align to the mission
objectives.

Product Roadmap A high-level visual summary that maps out the vision and direction of
product offerings over time. It describes the goals and features of each
software iteration and increment.

Provisioning Instantiation, configuration, and management of software or the
environments that host or contain software.

Release A collection of one or more new or changed services or service
components deployed into a live environment as a result of one or more
changes.
Source: ISO/IEC 20000-10:2018

Release Burndown Technique to display publicly the progress of the current release.
Typically a release burndown graph is used. The vertical axis shows the
work remaining for a release.

Reporting An account or statement describing an event.

Repository A central place in which data is aggregated and maintained in an
organized way.

Resource In the context of computer systems, resources are used for computation
such as central processing unit, memory, disk, network- connections
and bandwidth.

Risk-Based Test
Management Approach

An approach that determines the level of testing based on the
probability and consequences of system or software failures.

Risk Management
Framework (RMF)

A set of standards that enable DoD agencies to effectively manage
cybersecurity risk and make more informed, risk-based decisions.
Source: NIST 800-53

Scanning

Scanning Security: The evaluation of software for cybersecurity
weaknesses and vulnerabilities.

Safety Critical Used in the context of software system safety, a condition, event,
operation, process, or item whose mishap severity consequence is
either catastrophic or critical (e.g., safety-critical function, safety-critical
path, and safety-critical component).

Scrum A process framework used to manage software product development
and other knowledge work. Scrum is empirical in that it provides a
means for teams to establish a hypothesis of how they think something
works, try it out, reflect on the experience, and make the appropriate
adjustments.
Source: https://agilealliance.org/glossary

Scrum Master A role within the Scrum framework. The scrum master ensures the
scrum framework is followed. He/she is committed to the scrum values
and practices, but should also remain flexible and open to opportunities
for the team to improve their workflow.
Source: https://atlassian.com/agile/scrum/scrum-master

https://agilealliance.org/glossary
https://atlassian.com/agile/scrum/scrum-master

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
119

Term Definition

Service Mesh A dedicated infrastructure layer that developers can add to applications.
It allows developers to transparently add capabilities like observability,
traffic management, and security, without adding them to the
developer’s own code. The term “service mesh” describes both the type
of software developers use to implement this pattern, and the security or
network domain that is created when developers use that software.
Source: https://istio.io

Sidecar A container used to extend or enhance the functionality of an application
container without strong coupling between the two. When using CNCF
Kubernetes, a pod is composed of one or more containers. A sidecar is
a utility container in the pod. Its purpose is to support the main
application container or containers inside the same pod.

Sidecar Container Security
Stack

A stack of sidecar containers aimed to enhance the security capabilities
of the main containers in the same pod.

Software as a Service
(SaaS)

A method of software delivery and licensing in which software is
accessed online via a subscription, rather than bought and installed
on individual computers.

Software Engineering Software Engineering may be defined as the systematic design and
development of sofware products and the management of the software
process. (Mills 1980)

Software Factory A structured collection of related software assets that aids in producing
computer software applications or software components according to
specific, externally defined end user requirements through an assembly
process. Various types of factories include: embedded, application,
safety critical, AI/ML, data (source: DSO CoP, 06-09-2022 DevSecOps
CoP Slides – Software Factories FINALv2)

Software-Intensive A system in which software represents the largest segment in one or
more of the following criteria: system development cost, system
development risk, system functionality, or development time.

Sponsor The organization that holds the authority and advocates for needed user
capabilities and associated resource commitments. The sponsor is
typically the Military Service or Command that will use the capability
once delivered.

Sprint A set period of time during which specific work has to be completed and
made ready for review. Typically one or two weeks. Agile development
projects are carried out in a series of sprints.

Strangler Pattern A way of migrating a legacy system incrementally by replacing existing
functionalities with new applications and services in a phased approach.
After the replacement of the entire functionality the new application
system eventually replaces all the old legacy system's features. “
https://www.castsoftware.com/blog/how-to-use-strangler-pattern-for-
microservices-modernization
N Natesan, “How to Use Strangler Pattern for Microservices
Modernization,” Software Intelligence Pulse, September 2019.

Security Monitorting Security Monitoring. The regular observation, recording, and
presentation of activities.

https://istio.io/
https://www.castsoftware.com/blog/how-to-use-strangler-pattern-for-microservices-modernization
https://www.castsoftware.com/blog/how-to-use-strangler-pattern-for-microservices-modernization

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
120

Term Definition

Task Individual activities to be completed to satisfy a user story or use case
(e.g., implement code for a specific feature or complete design for a
specific feature).

Technical Debt Design or implementation decisions that are expedient in the short term
but that set up a technical context that can make a future change
costlier or impossible. Technical debt may result from having code
issues related to architecture, structure, duplication, test coverage,
comments and documentation, potential bugs, complexity, coding
practices, and style, which may accrue at the level of overall system
design or system architecture, even in systems with great code quantity.

Telemetry The process of recording system behavior; including the capability to
take measurements, collect, and distribute the data.

Test Driven Development
(TDD)

Test driven development is an iterative, fine grained approach to coding
-- far more fine-grained that sprints. It treats test programs as
executable specification of program behavior that written before the
code. “It is often described the practices that contribute to it: Red Green
Refactor.

• Red: Write a test, run it, and see it fail
• Green: Write just enough code to to make the test pass, run it

and see it pass.
• Refactor: Modify the code and the test to make it clear,

expressive, elegant, and more general. Run the test after every
tiny change and see it pass.”

Source (Farley, Modern Software Engineering 2022)

Use Case In software and systems engineering, a list of actions or event steps,
typically defining the interactions between a user and a system (or
between software elements) to achieve a goal. Use cases can be used
in addition to or in lieu of user stories.

User Agreement (UA) A commitment between the sponsor and the PM for continuous user
involvement and assigned decision making authority in the development
of and delivery of software capability releases.

User Story A small desired behavior of the system based on a user scenario that
can be implemented and demonstrated in one iteration. A story is
composed of one or more tasks. In software development and product
management, a user story is an informal, natural language description
of one or more features of a software system. User stories are written
from the perspective of a user of a system.

Value Assessment An outcome-based assessment of mission improvements and
efficiencies realized from the delivered software capabilities, and a
determination of whether the outcomes have been worth the
investment. The sponsor and user community perform value
assessments at least annually, to inform DA and PM decisions.

Virtual Machine (VM) A machine that appears to the applications running on it to be dedicated
hardware, but which is in fact hardware shared by other applications.
Software termed a hypervisor manages the sharing of hardware
between virtual machines. The hypervisor manages this in such as way
that the vast majority of machine instructions run directly on the base
hardware.

Glossary

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
121

Term Definition

Virtual Network Network constructed of software-defined devices.

Virtual Storage Storage constructed of software-defined devices.

Zero Trust A security framework requiring all users, whether in or outside the
organization’s network, to be authenticated, authorized, and
continuously validated for security configuration and posture before
being granted or keeping access to applications and data. Zero Trust
assumes that there is no traditional network edge; networks can be
local, in the cloud, or a combination or hybrid with resources anywhere
as well as workers in any location

A complete glossary of acquisition terms is maintained on the Defense Acquisition University website. The Defense
Acquisition University Glossary can be found at https://www.dau.edu/tools/t/DAU-Glossary

https://www.dau.edu/tools/t/DAU-Glossary

Acronyms

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
122

Acronyms

AAF Adaptive Acquisition Framework
AI Artificial Intelligence
API Application Programming Interface
ATC Approval to Connect
ATO Authorization to Operate
BOM Bill of Materials
CAE Component Acquisition Executive
CAPE Cost Assessment and Program Evaluation
cATO Continuous Authorization to Operate
CD Continuous Delivery
CI Continuous Integration
CID Continuous Iterative Development
CIO Chief Information Officer
CNCF Cloud Native Computing Foundation
CNS Capability Needs Statement
COTS Commercial Off-the-Shelf
CPU Central Processing Unit
DA Decision Authority
DCAR DoD Centralized Artifact Repository
DE Digital Engineering
DevSecOps Development, Security, and Operations
DIB Defense Innovation Board
DoD Department of Defense
DoDD DoD Directive
DoDI DoD Instruction
DORA DevOps Research and Assessment
DOT&E Director, Operational Test and Evaluation
DSB Defense Science Board
EMD Engineering and Manufacturing Development
EO Executive Order
ESLOC Equivalent Source Lines of Code

Acronyms

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
123

FQT Full Qualification Test
FY Fiscal Year
GOTS Government Off-the-Shelf
HSI Human Systems Integration
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
INCOSE International Council on Systems Engineering
IP Intellectual Property
IT Information Technology
MBSE Model-Based Systems Engineering
MDA Milestone Decision Authority
MDAP Major Defense Acquisition Program
MOSA Modular Open Systems Approach
MTTR Mean Time to Restore
MVCR Minimum Viable Capability Release
MVP Minimum Viable Product
NDS National Defense Strategy
NIST National Institute of Standards and Technology
OCI Open Container Initiative
OS Operating System
OSS Open-Source Software
OT Operational Testing
OUSD(A&S) Office of the Under Secretary of Defense for Acquisition and

Sustainment
OUSD(R&E) Office of the Under Secretary of Defense for Research and Engineering
PEO Program Executive Officer
PI Program Increment
PIT Platform Information Technology
PM Program Manager
PMO Program Management Office
PSM Practical Software and Systems Measurement (Group)
RMF Risk Management Framework
SaaS Software as a Service

Acronyms

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
124

SaC Security as Code
SI&T System Integration and Test
SLOC Source Lines of Code
SPO System Program Office
SW-ICD Software Initial Capabilities Document
TDD Test Driven Development
TMRR Technology Maturation and Risk Reduction
UA User Agreement
USC United States Code
USD(A&S) Under Secretary of Defense for Acquisition and Sustainment
USD(P&R) Under Secretary of Defense for Personnel and Readiness
USD(R&E) Under Secretary of Defense for Research and Engineering
VM Virtual Machine

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
125

References

AFCEA.org. 2021. "Army's New Tactical Network Faces First Test in 'Crucible of Combat'."
Federal News Network. April 5. Accessed June 1, 2021.
https://federalnewsnetwork.com/army/2021/04/armys-new-tactical-network-faces-first-
test-in-crucible-of-combat/.

ATC. 2017. Report to the President on Federal IT Modernization. Washington, D.C.: American
Technology Council (ATC), Office of the President.
https://www.cio.gov/assets/resources/Report-to-the-President-on-IT-Modernization-
Final.pdf.

Brosseau, Daniel, Sherina Ebrahim, Christopher Handscomb, and and Shail Thaker. 2019. The
Journey to an Agile Organization. Washington, D.C.: McKinsey & Co.
https://www.mckinsey.com/business-functions/organization/our-insights/the-journey-to-
an-agile-organization.

CAPE. 2020. DoD Cost Estimating Guide. Washington, D.C.: Department of Defense (DoD)
Cost Assessment and Program Evaluation (CAPE) .
https://www.cape.osd.mil/files/Reports/DoD_CostEstimatingGuidev1.0_Dec2020.pdf.

—. 2022. Unified Code Counter: Government. Department of Defense Cost Estimation and
Program Evaluation (CAPE). Accessed August 19, 2022.
https://cade.osk.mil/tools/unifiedcodecounter.

Chaillan, Nicolas. 2020. "From Waterfall to DevSecOps."
https://software.af.mil/dsop/documents/.

CJCSI 3162.02. 2019. CJCSI 3162.02, Methodology for Combat Assessment. Washington, D.C.:
Chairman of the Joint Chiefs of Staff (JCS).

CJCSI 8510.01C. 2012. CJCS Instruction 8510.01C, Management of Modeling and Simulation.
Washington, D.C.: Chairman of the Joint Chiefs of Staff (JCS) J-8.
https://www.jcs.mil/Portals/36/Documents/Library/Instructions/8510_01.pdf?ver=-
7XBK8wXzkM9LoRqAWD10A%3d%3d.

CNSSI 4009. 2015. CNSSI No. 4009, Committee on National Security Systems (CNSS) Glossary.
Fort Meade, Md.: CNSS, National Security Agency.

Conway, Melvin E. 1968. "How Do Committees Invent." Datamation, April: 28-31.
http://www.melconway.com/Home/pdf/committees.pdf.

Costello, Katie. 2019. "The Secret to DevOps Success." Smarter with Gartner, April 11.
https://www.gartner.com/smarterwithgartner/the-secret-to-devops-success/.

Crisman, Dr. Jill. 2020. "Artificial Intelligence, OUSD (R&E) AI Software Roadmap."
Presentation for OUSD (R&E) Brown Bag Series.

DAG 3-2.3.1. 2017. "Software." In Defense Acquisition Guidebook (DAG). Fort Belvoir, Va.:
Defense Acquisition University (DAU).
https://www.dau.edu/pdfviewer?Guidebooks/DAG/DAG-CH-3-Systems-
Engineering.pdfaspx.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
126

DAG 3-2.4.1. 2017. "Modular Open Systems Approach." In Defense Acquisition Guidebook
(DAG). Fort Belvoir, Va.: Defense Acquisition University (DAU).
https://www.dau.edu/pdfviewer?Guidebooks/DAG/DAG-CH-3-Systems-
Engineering.pdfaspx.

DAU AAF. 2020. Adaptive Acquisition Framework (AAF) Pathways. Defense Acquisition
University (DAU). Accessed 2022. https://aaf.dau.edu/aaf/aaf-pathways/.

DAU AAF Software. 2022. Software Acquisition. Defense Acquisition University (DAU).
Accessed 2022. https://aaf.dau.edu/aaf/software/.

DAU DevSecOps. 2022. Defense Acquisition University (DAU) DevSecOps Academy. Accessed
Nov 6, 2022. https://www.dau.edu/cop/it/Pages/Topics/DevSecOps.aspx.

DAU JCIDS Primer. 2019. Joint Capabilities Integration and Development System (JCIDS): A
Primer. Fort Belvoir, Va.: Defense Acquisition University (DAU).
https://myclass.dau.edu/bbcswebdav/institution/Courses/Rapid%20Deployment/JCIDS%
20Primer.

DAU Metrics and Reporting. 2022. Metrics and Reporting. Defense Acquisition University
(DAU). Accessed March 29, 2023. https://aaf.dau.edu/aaf/software/metrics-and-
reporting/.

DAU Selecting Pathways. 2022. Selecting and Transitioning Pathways. Accessed 2022.
https://aaf.dau.edu/aaf/selecting-a-pathway/.

DCWF. 2022. DoD Cyber Workforce Framework (DCWF). DoD Chief Information Officer.
https://public.cyber.mil/cw/dcwf/.

DIB. 2019a. Software Acquisition and Practice (SWAP) Study. Washington, D.C.: Defense
Innovation Board (DIB), Department of Defense.
https://innovation.defense.gov/software/.

DIB. 2019b. Software Is Never Done: Refactoring the Acquisition Code for Competitive
Advantage. Washington, D.C.: Defense Innovation Board (DIB), Department of Defense.
Accessed 11 21, 2019. innovation.defense.gov/software.

DoD CIO. 2022. DCWF Orientation. DoD Chief Information Officer (CIO) Cyber Workforce
Management Directorate, Washington, D.C.: DoD Cyber Exchange, Defense Information
Systems Agency. https://public.cyber.mil/training/dcwf-orientation/.

DoD CIO. 2018. DoD Cloud Strategy. Washington, D.C.: DoD Chief Information Officer (CIO).
https://media.defense.gov/2019/Feb/04/2002085866/-1/-1/1/DOD-CLOUD-
STRATEGY.PDF.

DoD CIO. 2020. DoD Data Strategy. Washington, D.C.: DoD Chief Information Officer (CIO).
https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DATA-
STRATEGY.PDF.

DoD CIO. 2019a. DoD Digital Modernization Strategy. Washington, D.C.: DoD Chief
Information Officer (CIO). https://media.defense.gov/2019/Jul/12/2002156622/-1/-
1/1/DOD-DIGITAL-MODERNIZATION-STRATEGY-2019.PDF.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
127

DoD CIO. 2019b. DoD Enterprise DevSecOps Reference Design, Version 1.0. Washington,
D.C.: Department of Defense (DoD) Chief Information Officer (CIO).

—. 2021. DoD Open Source Software FAQ. Department of Defense (DoD) Chief Information
Officer (CIO). October 28. https://dodcio.defense.gov/open-source-software-faq/.

DoD CIO DSOERDK . 2021. DoD Enterprise DevSecOps Reference Design: Multi-Cluster
CNCF Kubernetes. Washington, D.C.: DoD Chief Information Officer (CIO). Accessed
August 22, 2022.
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsRefDesign-Multi-
ClusterKubernetes.pdf.

DoD. 2020a. Cybersecurity Test and Evaluation Guidebook 2.0. Guide, Washington, D.C.:
Department of Defense (DoD). Accessed August 13, 2020.
https://www.dau.edu/cop/test/DAU%20Sponsored%20Documents/Cybersecurity-Test-
and-Evaluation-Guidebook-Version2-change-1.pdf.

DoD. 2020b. DDR&E Advanced Capabilities: Software Engineering. Washington, D.C.:
Department of Defense (DoD). Accessed August 13, 2020.

—. n.d. DoD DevSecOps Software Factory Templates.
https://intelshare.intelink.gov/sites/SWMod/DoDDevSecOps/_layouts/15/start.aspx#/Dev
SecOps%20Software%20Factory%20Inventory/Forms/AllItems.aspx .

—. 2021. DoD Software Modernization Strategy, Version 1.0. Washington, D.C.: Department of
Defense (November).

DOD DSO Playbook. 2021. "DevSecOps Fundmentals Playbook." dodcio.defense.gove.
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOpsFundamentalsPlaybo
ok.pdf.

DoD Enterprise DevSecOps Portal. 2023.
https://intelshare.intelink.gov/sites/SWMod/DoDDevSecOps/_layouts/15/start.aspx#/Site
Pages/Home.aspx.

DoD. 2018. Summary of the 2018 National Defense Strategy - Sharpening the American
Military's Competitive Edge. Washington, D.C.: Department of Defense.
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-
Summary.pdf.

DoD. 2018. Summary of the 2018 National Defense Strategy - Sharpening the American
Military's Competitive Edge. Washington, D.C.: Department of Defense.

DoDAIS 2018. 2018. "Summary of the 2018 Department of Defense Artificial Intelligence
Strategy - Harnessing AI to Advance Our Security and Prosperity."
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-
STRATEGY.PDF.

DoDD 5000.59. 2018. DoD Directive 5000.59, DoD Modeling and Simulation Management.
Washington, D.C.: Office of the Under Secretary of Defense for Research and
Engineering.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/500059p.pdf.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
128

DoDD 5100.01. 2020. DoD Directive 5100.01, Functions of the Department of Defense and Its
Major Components. Washington, D.C.: Secretary of Defense.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/510001p.pdf?ver=20
20-09-17-154337-967.

DoDD 5142.02. 2008. Under Secretary of Defense for Personnel adn Readiness (USD(P&R)).
Department of Defense.

DoDD 8140.01. 2020. DoD Directive 8140.01, Cyberspace Workforce Management.
Washington, D.C.: Deputy Secretary of Defense.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/814001p.pdf.

DoDI 1400.25 Volume 250. 2016. "DoD Civilian Personnel Management System: Civilian
Strategic Human Capital Planning (SCHP)."

DoDI 5000.02. 2022. DoD Instruction 5000.02, Operation of the Adaptive Acquisition
Framework, Change 1. Office of the Under Secretary of Defense for Acquisition and
Sustainment (June).
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=20
20-01-23-144114-093.

DoDI 5000.85. 2020. DoD Instruction 5000.85, Major Capability Acquisition. Washington,
D.C.: Office of the Under Secretary of Defense for Acquisition and Sustainment.
http://acqnotes.com/wp-content/uploads/2020/08/DoD-Instruction-5000.85-Major-
Capability-Acquisition-6-Aug-2020.pdf.

DoDI 5000.87. 2020. "Operation of the Software Acquisition Pathway." Office of the Under
Secretary of Defense for Acquistion and Sustainment, October 2. Accessed August 17,
2022. https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF.

DoDI 5000.88. 2020. DoD Instruction 5000.88, Engineering of Defense Systems. Washington,
D.C.: Office of the Under Secretary of Defense for Research and Engineering.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500088p.PDF?ver=O
8LFc8NzlyJX-SgM2Haalw%3d%3d.

DoDI 5000.89. 2020. DoD Instruction 5000.89, Test and Evaluation. Washington, D.C.: Office
of the Under Secretary of Defense for Research and Engineering and Office of the
Director, Operational Test and Evaluation.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF?ver=Pl
c85E0-NVNide91K3XQLA%3D%3D.

DoDI 5000.95. 2022. DoD Instruction 5000.95, Human Systems Integration in Defense
Acquisition. Washington, D.C.: Office of the Under Secretary of Defense for Research
and Engineering.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500095p.PDF?ver=C
1L4ZM9Wi4Qa4p7JP7EPtA%3D%3D.

DoDI 8510.01. 2020. DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD
Information Technology (IT). Washington, D.C.: DoD Chief Information Officer .
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/851001p.pdf?ver=qE
E2HGN_HE4Blu7161t1TQ%3D%3D.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
129

DORA. 2022. DevOps Research and Assessment (DORA) Website. Accessed August 19, 2022.
https://devops-research.com/research.html#reports.

DSB. 2018. Design and Acquisition of Software for Defense Systems. Washington, D.C.: Defense
Science Board (DSB), Office of the Under Secretary of Defense for Research and
Engineering. https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-
2018.pdf.

DSOF. 2021. DoD Enterprise DevSecOps Fundamentals (DSOF): Glossary. Washington, D.C.:
Department of Defense (DoD) Chief Information Officer (CIO).

DSOP. 2022. DoD Enterprise DevSecOps Initiative (DSOP). Washington, D.C.: U.S. Air Force,
https://software.af.mil/dsop/.

EO 14028. 2021. Executive Order (EO) 14028, Improving the Nation's Cybersecurity.
Washington, D.C.: The White House. https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/.

Farley, David. 2022. Modern Software Engineering. Boston: Addison-Wesley.
—. 2022. Modern Software Engineering. Boston: Addison-Wesley.
FITARA. 2014. Federal Information Technology Acquisition Reform Act. 113th Congress (2013-

2014), Washington, D.C.: Government Publishing Office.
https://www.congress.gov/bill/113th-congress/house-bill/1232.

Forbes Technology Council. 2019. "Three Engineering Performance Metrics That Business Can
Understand." Forbes, August 5. Accessed October 2020.
https://www.forbes.com/sites/forbestechcouncil/2019/08/05/three-engineering-
performance-metrics-the-business-can-understand/#72c68a3b704d.

GAO. 2020. Agile Assessment Guide: Best Practices for Agile Adoption and Implementation.
U.S. Government Accountability Office, Washington, D.C.: U.S. Government
Accountability Office. https://www.gao.gov/assets/710/709711.pdf.

GAO. 2019a. Space Command and Control: Comprehensive Planning and Oversight Could
Help DoD Acquire Critical Capabilities and Address Challenges. Washington, D.C.:
Government Accountability Office (GAO). https://www.gao.gov/products/GAO-20-146.

GAO. 2019b. Weapon System Sustainment, DoD Needs to Better Capture and Report Software
Sustainment Costs. Washington, D.C.: Government Accountability Office (GAO).
Accessed June 2, 2021. https://www.gao.gov/assets/gao-19-173.pdf.

Greenemeier, Larry. 2017. "20 Years after Deep Blue: How AI Has Advanced Since Conquering
Chess." Scientific American, June 7. Accessed August 18, 2022.
https://www.scientificamerican.com/article/20-years-after-deep-blue-how-ai-has-
advanced-since-conquering-chess/.

Humble, Jez, and David Farley. 2011. Continuous Delivery. Boston: Addison-Wesley.
INCOSE. 2023. MBSE Initiative. Accessed March 30, 2023. https://www.incose.org/incose-

member-resources/working-groups/transformational/mbse-initiative.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
130

Intellipedia Secure Coding Guidelines. 2022. Secure Coding Guidelines (CAC Required).
Intelink (CAC Required).
https://intellipedia.intelink.gov/wiki/Secure_Coding_Guidelines.

ISO 9241-210. 2010. "ISO 9241-210:2010. Ergonomics of human-system interaction — Part
210: Human-centred design for interactive systems."

ISO/IEC/IEEE DIS 24641. 2021. "DIS 24641:2021(E) System and Software Engineering:
Methods and Tools for Model-Based Systems and Software Engineering." Accessed 11 5,
2022. https://www.iso.org/standard/79111.html.

JAIC. 2020. Understanding AI Technology. Department of Defense (DoD) Joint Artificial
Intelligence Center (JAIC).

Jaiswal, Sonoo. n.d. Difference between Microkernel and Monlithic Kernel. Accessed November
16, 2022. https://www.javatpoint.com/microkernel-vs-monolithic-kernel.

JCS. 2016. Cross-Domain Synergy in Joint Operations: Planner's Guide. Washington, D.C.:
Joint Chiefs of Staff (JCS) Joint Force Development (J7).
https://www.jcs.mil/Portals/36/Documents/Doctrine/concepts/cross_domain_planning_gu
ide.pdf?ver=2017-12-28-161956-230.

JCS. 2018. Joint Concept for Integrated Campaigning (JCIC). Washington, D.C.: Joint Chiefs of
Staff (JCS).
https://www.jcs.mil/Portals/36/Documents/Doctrine/concepts/joint_concept_integrated_c
ampaign.pdf?ver=2018-03-28-102833-257.

—. n.d. Joint Doctrine Publications. Joint Chiefs of Staff (JCS).
https://www.jcs.mil/Doctrine/Joint-Doctine-Pubs/.

JCS. 2020. Joint Planning. Washington, D.C.: Joint Chiefs of Staff (JCS) Joint Publications 5-0.
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp5_0.pdf?ver=ztDG06paGvpQ
RrLxThNZUw%3d%3d.

JCS NMS. 2018. National Military Strategy 2018. Department of Defense, Washington, D.C.:
Joint Chiefs of Staff (JCS) Directorate for Strategy, Plans, and Policy (J-5).
https://www.jcs.mil/Portals/36/Documents/Publications/UNCLASS_2018_National_Mili
tary_Strategy_Description.pdf.

JDMS. 2021. Journal of Defense Modeling and Simulation: Applications, Methodology,
Technology - Special Issue: Modeling and Simulation as a Service. Vol 18, Issue 1.
Society for Modeling and Simulation International, SAGE Journals.
https://journals.sagepub.com/toc/dms/current#sage_toc_section_SpecialsectiononTransfo
rmingtheengineeringenterpriseSpecialsectionarticles.

Kan, Stephen. 2003. Metrics and Models in Software Quality Engineering. Boston: Addison-
Wesley Professional.

Kim, Gene, Jez Humble, John Willis, and and Patrick Debois. 2016. The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. Portland, Ore.: IT Revolution Press. https://itrevolution.com/book/the-
devops-handbook.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
131

Mills, Harlan D. 1980. "The Management of Software Engineering, Part I: Principles of Software
Engineering." IBM Systems Journal (IBM) 19 (4).

MITRE. 2019. A New Battle Command Architecture for Multi-Domain Operations: Countering
Peer Adversary Power Projection. McLean, Va.: MITRE Center for Technology and
National Security. https://www.mitre.org/sites/default/files/publications/Joint-All-
Domain-Command-Control.pdf.

NDAA 230. FY 2020. National Defense Authorization Act (NDAA) for Fiscal Year 2020, Section
230, Policy on the Talent Management of Digital Expertise and Software Professionals.
P.L. 92, 116th Congress, Washington, D.C.: Government Publishing Office.
https://www.govinfo.gov/content/pkg/PLAW-116publ92/html/PLAW-116publ92.htm.

NDAA 868c. FY 2019. National Defense Authorization Act (NDAA) for Fiscal Year 2019,
Section 868(c), Implementation of Recommendations of the Final Report of the Defense
Science Board Task Force on the Design and Acquisition of Software for Defense
Systems. P.L. 115-232, 115th Congress, Washington, D.C.: Government Publishing
Office. https://www.govinfo.gov/content/pkg/PLAW-115publ232/html/PLAW-
115publ232.htm.

NDAA. FY 2017. National Defense Authorization Act (NDAA) for Fiscal Year 2017. S.2943,
114th Congress, Washington, D.C.: Government Publishing Office, December 23, 2016.
https://www.congress.gov/bill/114th-congress/senate-bill/2943/text.

NDS Fact Sheet. 2022. Summary of the 2022 National Defense Strategy. Washington, D.C.:
Secretary of Defense.

Newman, Sam. 2019. Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith. Online: O’Reilly Media, Inc. https://www.oreilly.com/library/view/monolith-
to-microservices/9781492047834/.

NIST. 2022. NIST Special Publication 800-218. Secure Software Development Framework
(SSDF) Version 1.1. NIST.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf.

NIST SP 1800-16. 2020. Securing Web Transacvtions, TLS Server Certificate Management.
National Institute of Standards and Technology. Accessed March 29, 2023.
http://doi.org/10.6028/NIST.SP.1800-16.

NIST SP 800-190. 2017. Application Container Security Guide. National Insitute of Standards
and Technology.

NIST SP 800-207. 2020. NIST Special Publication 800-207. NIST Guidance on Zero Trust
Architecture. Gaithersburg, Md.: National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-207.

NIST SP 800-53. 2020. SP 800-53, Rev. 5, Security and Privacy Controls for Information
Systems and Organizations. Gaithersburg, Md.: National Institute of Standards and
Technology (NIST), Department of Commerce.
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
132

NISTIR 8269 (draft). 2019. A Taxonomy and Terminology of Adversarial Machine Learning. .
Gaithersburg, Md.: National Institute Standards and Technology. Accessed August 18,
2022. https://csrc.nist.gov/publications/detail/nistir/8269/draft.

Northen, Carlton, Dr. Kathleen Mayfield, Robert Benito, and Michelle Casagni. 2020. Handbook
for Implementing Agile in Department of Defnse Information TechnologyAcquisition.
MITRE Technical Report, McLean, Va.: The MITRE Corporation.

NSS. 2017. National Security Strategy of the United States of America. Washington, D.C.: White
House. https://www.whitehouse.gov/wp-content/uploads/2017/12/NSS-Final-12-18-
2017-0905.pdf.

NTIA SBOM. 2021. Software Bill of Materials. National Telecommunications and Information
Administration, Department of Commerce (NTIA). https://ntia.gov/page/software-bill-
materials.

OMB. 2019. Federal Cloud Computing Strategy: From Cloud First to Cloud Smart Strategy.
Chief Information Officers (CIO) Council, Office of Management and Budget.
https://cloud.cio.gov/strategy/.

OUSD(A&S). 2020. Software Acquisition Pathway Interim Policy: Procedures. Memorandum,
Washington, D.C.: Under Secretary of Defense for Acquisition and Sustainment
OUSD(A&S). Accessed August 13, 2020.
https://www.acq.osd.mil/ae/assets/docs/USA002825-
19%20Signed%20Memo%20(Software).pdf.

OUSD(R&E). 2018. DoD Digital Engineering Strategy. Washington, D.C.: Office of the Under
Secretary of Defense for Research and Engineering (OUSD(R&E)).

OUSD(R&E). 2022. Engineering of Defense Systems Guidebook. Washington, D.C.: Office of
the Under Secretary of Defense for Research and Engineering.

OUSD(R&E). 2020. Mission Engineering Guide. Office of the Under Secretary of Defense for
Research and Engineering (OUSD(R&E)).

OUSD(R&E) Software S&T Strategy. 2021. DoD Software Science and Technology Strategy. In
Response to NDAA FY 2020. Washington, D.C.: Office of the Under Secretary of
Defense for Research and Engineering (OUSD(R&E)).

Pratt and Whitney. 1983. Weibull Analysis Handbook. ADA 143100, West Palm Beach, Fla.:
Pratt and Whitney Government Products Division.

PSM. 2022. "Continuous Iterative Development (Agile) Measurement Framework." Vers. 2.1.
Practical Software and Systems Measurement (PSM). April 15. Accessed August 19,
2022. http://www.psmsc.com/CIDMeasurement.asp.

Red Hat. 2022. What Is Site Reliability Engineering. Accessed August 19, 2022.
https://redhat.com/en/topics/devops/what-is-sre.

Robson, Sean, Bonnie L. Triexenberg, Samantha E. Dinicola, Linsey Polley, John Davis, and
Maria C. Lytell. 2020. Software Acquisition Workforce Initiative for the Department of
Defense. Santa Monica, Calif.: RAND Corporation. Accessed August 5, 2022.
https://www.rand.org/t/RR3145.

References

SOFTWARE ENGINEERING FOR CONTINUOUS DELIVERY OF WARFIGHTING CAPABILITY
133

SAE6906. 2019. "SAE6906, Standard Practice for Human Systems Integration."
https://www.sae.org/standards/content/sae6906/.

SEI CERT Coding Standards. 2020. SEI CERT Coding Standards. Accessed March 29, 2023.
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.

Serbu, Jared. 2021. "Army's New Tactical Network Faces First Test in 'Crucible of Combat'."
Federal News Network. April 5. Accessed June 2, 2021.
https://federalnewsnetwork.com/army/2021/04/armys-new-tactical-network-faces-first-
test-in-crucible-of-combat/.

Space Command and Control. 2020. FY 2020 Space Command and Control Annual Report to
Congressional Defense Committees in Response to NDAA FY20 Sec.1613 Public Law
116-92, Page 12: Challenges Encountered and Lessons Learned. Space Command and
Control.

Tate, David M. 2020. "Software Productivity Trends and Issues." Defense Acquisition Research
Journal (Defense Acquisition University) 27 (2). https://www.dau.edu/libary/arj/.

Triezenberg, Bonnie L., Jason M. Ward, Jonathan Chait, Devon Hill, Sean Robson, and Jeff
Fourman. 2020. The Composition and Employment of Software Personnel in the U.S.
Department of Defense. Santa Monica, Calif.: RAND Corporation. Accessed August 5,
2022. doi:https://doi.org/10.7249/RRA520-1.

U.S. Army. 2021. "Mission Command Battle Laboratory, MBCL Looks to Future C2
Information Systems to Enable Decision Dominance." April 30. Accessed June 2, 2021.
https://www.army.mil/article/245810.

Software Engineering for Continuous Delivery of Warfighting Capability

Executive Director for Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering
3030 Defense Pentagon
Washington, DC 20301
https://www.cto.mil
osd.r-e.comm@mail.mil | Attention: Software Engineering Team

Distribution Statement A. Approved for public release. Distribution is unlimited.

	Software Engineering for Continuous Delivery of Warfighting Capability
	Contents
	1 Introduction
	1.1 Purpose
	1.2 Overview
	1.3 Guide Organization
	1.4 Summary

	2 Policy and Guidance
	2.1 Overarching Strategic Policy and Guidance
	2.2 Software Engineering and Acquisition
	2.3 Software Engineering and Technology Modernization
	2.4 DoD Instruction 5000.02
	2.5 Software Acquisition Pathway
	2.6 Human Systems Integration

	3 Technology Modernization
	3.1 Evolution in Software Technology
	3.2 Software Technologies
	3.3 Model-Based Systems Engineering
	3.4 Technology Modernization Resources

	4 Challenges and Best Practices
	4.1 Requirements Best Practices
	4.2 Software Architecture Best Practices
	4.3 Design Best Practices
	4.4 Coding Best Practices
	4.5 Code Development and Test Best Practices
	4.6 System Integration and Test Best Practices
	4.7 Operations Best Practices
	4.7.1 Release on Demand
	4.7.2 Automated Deployment

	4.8 Agile Development Maturity
	4.9 Summary

	5 Software Metrics Use and Lessons Learned
	5.1 Distinction between Waterfall and Agile/DevSecOps Metrics
	5.2 Metrics Inform Decisions
	5.2.1 Decision Makers
	5.2.2 Performance Insight
	5.2.3 Technical Debt

	5.3 Identifying and Selecting Software Metrics
	5.3.1 Metrics to Support Programmatic Decisions
	5.3.2 Questions to Consider in Selecting Metrics
	5.3.3 Qualities of a Useful Software Metric

	5.4 Software Metrics and Reporting
	5.5 Process Efficiency Metrics
	5.5.1 Team Velocity (Team Measure)
	5.5.2 Lead Time, Cycle Time, and Lead Time for Change (Team, Product, or Enterprise Measure)
	5.5.3 Cumulative Flow and Throughput (Team, Product, or Enterprise Measure)
	5.5.4 Sprint or Release Burndown (Team, Product, or Enterprise Measure)

	5.6 Technical Performance and Mission Effectiveness Metrics
	5.7 Software Quality Metrics
	5.7.1 Recidivism (Team or Product Measure)
	5.7.2 Defect Rate (Team or Product Measure)
	5.7.3 Test Coverage and Code Coverage (Product or Enterprise Measure)
	5.7.4 Cyclomatic Complexity (Product Measure)

	5.8 Software Productivity Metrics
	5.8.1 Size-Related Metrics
	5.8.2 Function-Related Metrics

	5.9 Continuous Integration, Test and Release, and Operations Metrics
	5.10 Benchmarking and Parametric Analysis
	5.10.1 Software Size
	5.10.2 Software Schedule
	5.10.3 Software Staffing
	5.10.4 Software Effort

	5.11 Weibull Analysis of Defect Trends
	5.11.1 What Weibull Defect Trend Analysis Indicates
	5.11.2 How Weibull Defect Trend Analysis Works
	5.11.3 Tips on preparing the data
	5.11.4 Applicability to CI/CD Pipeline

	6 Software Engineering and Workforce Competencies
	6.1 DoD Five-Tiered Competency Framework
	6.2 RAND Software Competency Study
	6.3 Agile/DevSecOps Software Factory
	6.4 Organizational Competency Needs
	6.5 DoD Digital Talent Management Forum
	6.6 DoD Cyber Workforce Framework

	7 Contracting for Software Engineering in DoD
	7.1 Agile and DevSecOps Software Development Contracting
	7.2 Contract Types
	7.3 Contracting Maturity Models
	7.3.1 Air Force Contracting Maturity Model

	7.4 Agile Software Development using Scrum
	7.5 Roles and Responsibilities
	7.5.1 The Product Owner
	7.5.2 The Development Team
	7.5.3 The Scrum Master

	7.6 Product Vision
	7.7 Product Roadmap
	7.8 Product Backlog
	7.9 Sprint Process
	7.9.1 Duration
	7.9.2 Meetings
	7.9.3 Definition-of-Done and Acceptance Criteria
	7.9.4 Project Completion

	7.10 Pricing
	7.11 Warranties and Indemnities
	7.12 Termination
	7.13 Intellectual Property Rights
	7.14 Dispute Resolution

	8 Artificial Intelligence and Machine Learning
	8.1 Background on Artificial Intelligence and Machine Learning
	8.2 Chief Digital and Artificial Intelligence Office (CDAO) Strategy
	8.3 OUSD(R&E) Artificial Intelligence Software Roadmap
	8.4 Vision for Accelerated, Continuous Delivery of AI/ML Capability
	8.5 Summary

	Glossary
	Acronyms
	References

