

Application Programming Interface (API)
Technical Guidance

October 2023

Office of the Executive Director for
Systems Engineering and Architecture

Office of the Under Secretary of Defense

for Research and Engineering

Washington, D.C.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Application Programming Interface (API) Technical Guidance

Office of the Executive Director for Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering
3030 Defense Pentagon
Washington, DC 20301
osd-sea@mail.mil
https://www.cto.mil/sea

Distribution Statement A. Approved for public release. Distribution is unlimited.
DOPSR Case # 24-T-0172.

Approved by

Principal Deputy Executive Director for Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering

October 2023

API Technical Guidance Change Record

Date Change Rationale

This page is intentionally blank.

Contents

API TECHNICAL GUIDANCE
v

Contents

1 Introduction.. 1

1.1 Purpose and Scope ... 1

1.2 Intended Audience ... 4

1.3 Document Relationships .. 4

1.4 DoD Landscape .. 5

1.4.1 API System Development Paradigm .. 5
1.4.2 Interoperability ... 7
1.4.3 Legacy Systems .. 9
1.4.4 Other API Terms .. 9

2 API Project Governance .. 10

3 Cybersecurity ... 11

3.1 Importance of APIs in Modern Warfare and Emerging Technologies .. 12

3.2 API Cybersecurity Challenges ... 12

3.3 Cybersecurity Best Practices .. 13

3.3.1 Implement Robust Authentication and Authorization Mechanisms ... 13
3.3.2 Ensure Input Validation and Output Encoding ... 14
3.3.3 Encrypt and Protect Data in Classified Environment ... 14
3.3.4 Monitor and Log for Early Threat Detection and Response ... 14
3.3.5 Tailor API Gateway and Firewall Protection to DoD Requirements ... 15
3.3.6 Ensure API Security Testing and Compliance in the DoD ... 16

4 Design and Implementation Principles .. 18

4.1 Common Data Model ... 18

4.2 Open Standards and Protocols ... 18

4.3 Design for Security Compliance .. 19

4.4 Developmental Testing and Validation Processes ... 20

4.5 Collaboration and Communication .. 21

4.6 API Parameters for Pagination, Sorting, and Filtering .. 22

4.7 API Metrics .. 23

5 Conclusion ... 24

Appendix A: API Project Governance Considerations ... 25

Appendix B: Common API Vulnerabilities and Threats .. 28

Appendix C: API Security Challenges .. 30

Contents

API TECHNICAL GUIDANCE
vi

Glossary .. 32

Acronyms .. 44

References ... 46

Figures
Figure 1-1. API Context Diagram from a System Perspective ... 2
Figure 1-2. API Context Diagram from a Data Perspective ... 3
Figure 1-3. Document Relationships .. 4
Figure 1-4. APIs in a System of System Context ... 6
Figure 1-5. Interoperability Concepts and their Relationships ... 7
Figure 1-6. Examples of Frameworks, Capabilities, Systems, and Protocols ... 8
Figure 1-7. Messaging Types .. 8
Figure 1-8. API Terms and Relationships ... 9
Figure 3-1. DevSecOps Infinity Diagram ... 11

Tables
Table 2-1. High-Quality API Attributes and Benefits .. 10
Table A-1. API Project Governance Considerations .. 25

1. Introduction

API TECHNICAL GUIDANCE
1

1 Introduction

In the rapidly evolving landscape of modern warfare, the U.S. Department of Defense (DoD)
relies on advancements in technology to maintain a competitive edge in joint warfare
capabilities. Central to these advancements are software application programming interfaces
(APIs). An API is “a system access point … accessible from application programs . . . to provide
well-defined functionality” (NIST SP 1800-21). APIs promote interoperability, security, and
scalability.

Interoperability, “the ability to act together coherently, effectively, and efficiently to achieve
tactical, operational, and strategic objectives” (CJCSI RSI 2019), is the priority of the Joint Staff
(Brady and Dianic 2022). Interoperability is crucial to modern software, joint warfighting,
artificial intelligence (AI) superiority, and achieving the Deputy Secretary of Defense Data
Decrees (DepSecDef 2021).

APIs are essential to interoperability (Brady and Dianic 2022). APIs facilitate data sharing,
collaboration, and the seamless integration of systems and capabilities across different branches
and units within the Department and with allies (e.g., NATO). Other key concepts of APIs
include sensor fusion and Internet of military things (IoMT) operational integration, emerging
technology adoption, rapid prototyping and experimentation, ecosystem development and
innovation, and protection of critical and emerging technologies.

APIs facilitate seamless communication among diverse software systems and enable the creation
of sophisticated, integrated applications. Composability of APIs allows numerous capabilities to
be aggregated rapidly into new and distinct capabilities.

The Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E))
office of Systems Engineering and Architecture (SE&A) led the development of this document
in collaboration with the OUSD for Acquisition and Sustainment (A&S) and a team involving
Joint All Domain Command and Control (JADC2) and more than 20 DoD Components.

1.1 Purpose and Scope

This guide provides an overview of API concepts in software development. The first release of
this guidance, or minimum viable product (MVP), covers governance, cybersecurity and zero
trust, and API design and implementation principles. Future versions will include additional
topics such as testing, development, security, and operations (DevSecOps), secure programming
and error handling, performance optimization, and scalability.

This document includes use cases, lessons learned, and best practices from DoD and industry.
Although other guides exist, this guide emphasizes the importance of enhancing and advancing

1. Introduction

API TECHNICAL GUIDANCE
2

the DoD warfighting capabilities of the near future to support the Combined JADC2 (CJADC2)
vision and to secure information interoperability across the DoD. (See also Appendix C: API
Security Challenges for more detail about the CJADC2 vision.) The guide describes an API
framework to help programs define their technical baseline for delivering future systems that
support the DoD enterprise and warfighter mission requirements.

Figure 1-1 illustrates the scope of APIs covered in this guidance from a system perspective.

Figure 1-1. API Context Diagram from a System Perspective

This figure views an API as a socket connection between two systems. In general, a socket (e.g.,
Web, Berkley, Windows, Unix, Linux, Java) is an abstract representation for the local endpoint
of a network communications path. This perspective dichotomizes API ecosystems into those
designed for the DoD and commercial industry.

Four types of DoD-specific warfighting systems are non-real-time (e.g., intelligence analytics,
logistics); real-time (e.g., networked weapons); back-end (e.g., order of battle); and capability
development (e.g., wargames, modeling and simulation); however, the commercial API
ecosystems such as business systems (e.g., paychecks); social networks (e.g., SIPR chat, other
ChatOps); transport systems (e.g., Link 16); or other frameworks (e.g., Global Information Grid)
are also partially in scope. Each such system contains one or more open or proprietary API
socket interfaces connecting with other systems. The future design scope of APIs includes the
four DoD systems and, in part, the four commercial systems. In the future, with the exception of
proprietary APIs, any API developed for or used by the DoD will be considered within scope.

 p g

DoD, Joint and Service Designed Systems

Business Systems

Commercially
Designed Systems

Rule: The design of APIs are considered within scope of this guidance when the framework,
system, software, or application using the APIs are are primarily designed or specified by
the DoD and services.

Non Real-Time
Warfighting

Systems
(e.g. Intelligence

analytics, logistics)

Real-Time
Warfighting Systems
(e.g. Networked weapon

system)

Future Design Scope

Backend
Warfighting

Systems
(e.g. battle order of

battle databases)

Transport Systems

Social Network Systems

(e.g. Data Fabric)(e.g. Global
Information Grid)

(e.g. FaceBook,
Zoom)

(e.g. Bank transfers,
CAD)

(e.g. Sipr Chat)

(e.g. Paycheck,
housing)

Warfighting
Capability

Development
Systems

(e.g. wargames,
modeling &
simulation)

Future Purchasing\Use Scope Rule: Any future framework, system, software, or application for purchase or use by the DoD
should be considered within scope of this guidance.

Frameworks

(e.g. USB)(e.g. JTTRS Link 16)

Socket API

1. Introduction

API TECHNICAL GUIDANCE
3

The scope of APIs also can be seen from a data perspective as shown in Figure 1-2.

Source: (NATO 2023)

Figure 1-2. API Context Diagram from a Data Perspective

This figure views an API as an automated data standard between two services. In general, a data
standard is any documented agreement on the representation, format, definition, structuring,
tagging, transmission, manipulation, use, and management of data (EPA 2023). An automated
data standard or API can reside at various levels including between autonomous decision-making
and data insight/analytic services (e.g., reporting, machine learning, statistical analysis);
analytics services and storage services (e.g., data warehouse, data lake); data integration and
interoperability services (e.g., batch or stream processing or data visualization) and community
of interest services; or data management and governance and the management plane (e.g., data
quality and security). Thus, any API in use by, designed by, or specified by the DoD, Joint, or
Services is considered within scope of this guidance.

The following items will be reserved for a future release:

• Testing

• APIs and DevSecOps

• Secure Programming and Error Handling

• Performance Optimization and Scalability

1. Introduction

API TECHNICAL GUIDANCE
4

1.2 Intended Audience

This document is intended for a range of stakeholders involved in the design, development,
deployment, and management of APIs across the DoD, industry, and academia, including the
following:

• Architects, designers, developers, and testers responsible for designing and implementing
APIs and data frameworks

• Program Managers (PMs) responsible for overseeing API development and deployment

• Security professionals responsible for ensuring the security and compliance of APIs

• Policy professionals responsible for maintaining policy for the DoD

• Acquisition professionals responsible for creating acquisition guides, pathways, and
policy

• Operations and support staff responsible for maintaining and monitoring APIs

1.3 Document Relationships

Figure 1-3 shows other guidance documents related to this topic and their relationships.

Figure 1-3. Document Relationships

API Guidance for
the DoD 2024

(guiding the
interoperability of APIs)

DevSecOps
Strategy 2021

(adopting best
practices of software

delivery)

DoD Software
Modernization
Strategy 2019

(advancing the joint
digital environment)

Software Modernization
Implementation Plan

2023
(establishing flexible oversight

of software delivery)

JADC2 Strategy
2021

(operationalizing all
battlefield data)

Strategies

Legend

Plans

Guides

Direct influence
Indirect influence

JADC2 Implementation
Plan 2022

(identifying organizations
responsible for delivering joint

command and control
capabilities)

1. Introduction

API TECHNICAL GUIDANCE
5

This guide is primarily related to three DoD strategies for advancing the joint digital
environment: DoD Software Modernization Strategy (DepSecDef 2019), the DevSecOps
Strategy (DoD DevSecOps Strategy 2021), and the JADC2 Strategy (Hoehn 2022).

The guide discusses adopting best practices (DoD CIO Library 2023) and operationalizing
battlefield data (Hoehn 2022). The guide is influenced directly by the Software Modernization
Implementation Plan (DoD CIO 2023) and the JADC2 Implementation Plan (DoD 2022) and
indirectly by close collaboration with the Joint Staff.

1.4 DoD Landscape

Brady and Dianic (2022) observed that “in contrast to commercial industry and modern web
economy. . . . DoD lacks a coherent API ecosystem.” They note that 21st century businesses
know investing in an API strategy pays significant dividends, and APIs or exposed interfaces
(with controlled access) promote interoperability, security, and scalability.

The DevSecOps strategy (DoD CIO Library 2023) also notes the challenge of having to rely on
few vendors for certain interfaces: “DoD must acknowledge a lock-in posture; recognizing
vendor lock-in, and recognizing product, version, architecture, platform, skills, legal, and mental
lock-in also exist” (DoD DevSecOps Strategy 2021).

This document considers the following DoD API goals:

• Combined Joint All-Domain Command and Control (CJADC2)

• Modular Open Systems Approach (MOSA)

• DoD Data Strategy (2020) VAULTIS Goals

1.4.1 API System Development Paradigm

An “application program” is a software system “implemented to satisfy a particular set of
requirements” (NIST SP 1800-21). APIs help organizations “connect the many different
application programs used in day-to-day operations. For developers, APIs provide
communication between application programs, simplifying their integration” (IBM API 2023).

An application program resides on a host hardware system, which may be part of a larger system,
which in turn may be part of a larger system of systems (SoS) as shown in Figure 1-4. The
application program calling the API can be entirely machine code or could have a user interface.

1. Introduction

API TECHNICAL GUIDANCE
6

Figure 1-4. APIs in a System of System Context

An API may be used in or developed for a single system or for an SoS environment. Within a
single system, the API may meet the same needs as the application program. In a broader SoS
context, the same API may or may not meet the needs of external systems and use cases.

For DoD, the API challenge is that each system is acquired via contracts from a specific
commercial industry, military industry, or government provider. APIs and application programs
in these systems may be designed by a single provider or alternatively by a consortium of
providers and stakeholders. These designs can be proprietary or open systems; however, the
actual APIs and application programs implemented into code by providers are for a specific
system or set of systems.

A crucial influence on the design of the APIs is the overall development environment in which
they are used. Principles of security, trust, dependencies, test, and production all must be
considered (see Section 4).

System A
System of Systems

System B

End User

API Calls and Response

Computer System 2Computer System 1

Application Program
Application Programming
Interface (API) End Point

System 2 Functionality

Application Program

1. Introduction

API TECHNICAL GUIDANCE
7

1.4.2 Interoperability

Interoperability is referenced in many contexts and forms, so establishing where APIs reside
among the different concepts is worthwhile. Figure 1-5 shows how the common terms relate to
one another.

Figure 1-5. Interoperability Concepts and their Relationships

Data strategies, architectures and frameworks are an integral part of interoperability and often
use APIs. APIs are used in conjunction with broader frameworks, which could be called models,
ecosystems, capabilities, protocols, and messaging standards. Figure 1-6 shows some examples.

Material / System Interoperability

Digital Interoperability

Interoperability

Operational Standardization

Rationalization (e.g. sharing equipment, engineering, supplies)

Mechanical Interoperability

Procedural Interoperability (e.g. sharing operation tactics)

Function
Interoperability

Communication Interfaces

Data
Interoperability

Application
Programming

Interfaces
(API)

Application Interoperability

Transport
Interfaces

1. Introduction

API TECHNICAL GUIDANCE
8

Source: ISO/IEC 7498-1:1994; Computer Networking Notes 2023.

Figure 1-6. Examples of Frameworks, Capabilities, Systems, and Protocols

APIs are a form of a message with a certain protocol, often partitioned by the Open System
Interconnection (OSI) model (Computer Networking Notes 2023), but not all messages are APIs,
as shown in Figure 1-7. Some legacy application programs and systems communicate with each
other where the messages are predetermined, and no programming interface is needed (e.g., Link
16). This guide covers all future messaging systems.

Figure 1-7. Messaging Types

Data Fabric / Mesh

HTTP, FTP

Web Link 16 (Legacy)

TCP, UDP

Routers, IP

RPC,
Syn/Ack

Encryption,
MPEG

Switches,
HDLC

Cable, RJ45

PPLI, digital voice

STN, QoS

Time Slot
Reallocation

TADIL J Catalog, 70
Bit Words

STD/DP, P2SP

960–1215 MHz
MSK

Web Sockets (WSS)

Mutual Transport
Layer Security

(mTLS)

Legend

Component

FrameworkApplication

Presentation

Session

Transport

Network

Data Link

Physical

Non-API Messaging

API Messaging
(more specific types

are darker)

Legend

Legacy
Frameworks
(e.g. Link 16)

API
Implementations

Non Web
Services
(e.g. time

sensitive combat
systems,

interfaces, point-
to-point systems)

Web Services

REST
(e.g. HTML,
streaming
services,

network based)

(e.g. SOAP,
payment

processing,
logins, database

storage)

Messaging

Adaptor

1. Introduction

API TECHNICAL GUIDANCE
9

1.4.3 Legacy Systems

The DoD has a large number of legacy systems that are costly and challenging to maintain.
Updating these systems with APIs can extend their life. Complete replacement of the systems at
once may be costly and time consuming, so some programs have discovered inexpensive and
creative techniques to integrate APIs with these legacy systems, ultimately improving
capabilities and extending the life span into the future.

In the objective future state, software processes will start with a discovery phase to identify the
existing APIs relevant to the application, their definition, and access pathway. Some new
applications will require APIs to be extended, or to be made more available, or very infrequently
new APIs will be needed and added. To reach the objective end state, an incremental phased
change approach will most likely be needed to employ applications and APIs (including the
deprecation of older API versions). This effort will take time and sustained enterprise
governance.

1.4.4 Other API Terms

Figure 1-8 shows other terms the community may be familiar with that relate to the terms in
this guide.

Figure 1-8. API Terms and Relationships

System
• Platform
• System of Systems/Set of Services

Messages
• Call/Response
• Request/Response

Network
Components

• Broker
• User Interfaces
• User Controls

Application
Program

API
End Point

Host 1

• Provider
• Host
• Computer

Network
• Transport
• Communication,

Messaging System
• Web Service, Cloud
• Enterprise Service Bus
• Common Interface

Application
Program or

Service
API

End Point
Product

• Software
Interface

Product
• Data, Information
• Microservices,

Functions

• Manager
• Access

Management

User

• Strategies
• Needs
• Opportunities

Goals

• Challenges
• Threat

Environment

• Parameters
• Documentation

Meta Language

• Protocols
• Software

Practices
• Frameworks
• Standards
• Models

API
Specifications

Vendor

• Company
• System Provider
• Contract

DevSecOps
• Development Team,

Programmer
• Software Production
• Software Factory
• Third-Party Developer

• Reference
Design

API Guide

Host 2

Management

2. API Project Governance

API TECHNICAL GUIDANCE
10

2 API Project Governance

This section discusses how DoD API project organizations should create a governance process to
guide development, implementation, and updates to their unique API ecosystem or framework. A
DoD API project is any new or existing DoD-funded project that is creating APIs or updating
their API. These projects could be system development programs for which APIs are but one
aspect of the system. The projects alternatively could be focused on interoperability standards or
API frameworks. All these use cases will be referred to in this guidance as “API projects.”

An API project governance model is the application of rules, policies, and standards to the
project API ecosystem. Governance includes how the API project organization should share,
encourage adaptation, administer, adjudicate, and update the API in support of both internal and
external stakeholders. The API project governance process described in this section will evolve,
as technologies, standards, best practices and organizations evolve. But this governance process
is focused on processes for open and fair governance, not specific technical recommendations.
For these functions, the guidance does not mean one size fits all. Developers must be free to
implement APIs as needed for mission requirements. A governance process and enforcement can
ensure the API follows best practice and demonstrates high-quality attributes, resulting in the
following benefits in Table 2-1.

Table 2-1. High-Quality API Attributes and Benefits

Attribute Benefit

Reusable Can reuse existing components. Developers only have to build components once and won’t end
up duplicating code. They can spend more of their time on tasks that benefit the business, like
building new services.

Reliable The APIs reliably are available and function as documented.

Interoperable Can be used with approval in all type of use scenarios by the applications that would benefit
operations.

Discoverable Developers can easily find existing API artifacts and reuse them in future designs.

Scalable Can have small or large number of elements and the APIs can serve many diverse users.

Consistent API remains consistent even when implemented by different developers and across the entire
DoD solution space.

Easy to Use The API is easy to understand and implement in many and diverse use cases.

Clear The API vision, design and documentation are clear. Helps keep everyone involved in the API
program. When stakeholders have misunderstandings about API goals or designs, it can cause
API programs to fail.

Secure Security is built into the foundation of the API development and deployments. API interfaces
includes classification metadata support (NSA Access rights and handling, information security
metadata, NSA Guidance for implementation of REST – in DISR).

Compliant Well-managed and visible exception pathways (Sindall 2020)

Complete Lifecycle use of API is well thought through and provisioned (Sindall 2023).

3. Cybersecurity

API TECHNICAL GUIDANCE
11

3 Cybersecurity

The Department is currently transitioning to DevSecOps (DevSecOps Reference Architecture
2023), which combines DevOps and zero trust principles with an added emphasis of security at
each of the DevOps life cycle phases.

Source: (DevSecOps Reference Architecture 2023)

Figure 3-1. DevSecOps Infinity Diagram

Zero trust is a security framework that challenges the traditional approach of trusting entities
within a network by default. Instead, it assumes that no entity, whether a user, device, or
application, should be trusted automatically. Zero trust adopts a “never trust, always verify”
approach, in which every access request is thoroughly authenticated, authorized, and
continuously monitored, regardless of the entity’s location or network environment (DevSecOps
Reference Architecture 2023).

DevSecOps supports the implementation of zero trust principles by:

• Incorporating strong identity and access management practices to ensure that only
authorized entities have access to resources.

• Implementing granular micro-segmentation to enforce strict access controls and prevent
lateral movement within the network.

• Leveraging automation and continuous security practices to continuously monitor and
enforce security policies.

• Integrating data-centric security measures, such as data labeling and encryption, to
protect sensitive information.

3. Cybersecurity

API TECHNICAL GUIDANCE
12

By integrating security practices into the DevOps process, DevSecOps helps organizations build
and maintain a strong security posture, which aligns with the principles of zero trust (NIST SP
800-207).

3.1 Importance of APIs in Modern Warfare and Emerging Technologies

The increased interconnectivity amplifies the attack surface, however, and introduces new
cybersecurity challenges that can potentially compromise mission-critical systems and
operations. APIs are susceptible to various attacks, including injection attacks, authentication and
authorization issues, availability, and data breaches. Consequently, securing APIs has become an
urgent priority for the DoD and other organizations that depend on them. Following are best
practices for defending against API threats in the context of emerging technology trends and the
evolving battlespace.

3.2 API Cybersecurity Challenges

The Department faces numerous API cybersecurity challenges as it seeks to maintain and
modernize its systems. APIs play a crucial role in facilitating communications across a wide
range of vital systems, which rely on the secure and timely exchange of information between
various Components in support of mission objectives. Cybersecurity challenges include:

• Ensuring the confidentiality, integrity, and availability of API communications and
maintaining effectiveness of reliant systems

• Securing and enhancing data exchange and interoperability capabilities for legacy
systems using open standards-based APIs

Addressing these challenges requires a comprehensive approach encompassing the development,
deployment, and ongoing management of APIs. This approach includes implementing secure
coding practices, conducting regular security testing, and continuously monitoring API activity
for potential threats. By prioritizing API security, the DoD can ensure the continued
effectiveness of its systems while safeguarding sensitive information from adversaries.

APIs are a critical component of modern software systems, enabling communication and data
exchange between different applications and services; however, APIs also can be a source of
vulnerabilities and threats if they are not properly secured. In the context of the DoD, APIs can
be particularly vulnerable to attacks given the sensitive nature of the data and systems they are
used to access.

To mitigate API vulnerabilities and threats, it is important to implement strong API security
measures, such as authentication and authorization mechanisms, encryption of data in transit and

3. Cybersecurity

API TECHNICAL GUIDANCE
13

at rest, input validation to prevent injection attacks, and continuous monitoring of API traffic and
logs. In addition, programs should stay up to date with the latest security best practices and
regularly review and update API security measures to ensure they remain effective. See also
Appendix B: Common API Vulnerabilities and Threats.

NIST provides an API security Special Publication (SP) 800-204, “Security Strategies for
Microservices-based Application Systems.” NIST provides additional in-depth coverage of the
topic in supplemental SPs specific for API security in SP 800-204A, 800-204B, and 800-204C.
Although the document is titled for microservices, the “microservices are packaged as APIs” (SP
800-204, section 4.1) to support complex data tasks. The SP specifically addresses API security
threats and associated mitigations. Specific threats to APIs include most attacks that normal
applications experience including “injection, encoding and serialization attacks, cross-site
scripting (XSS), Cross-Site Request Forgery (CSRF), and HTTP verb tampering” (NIST SP 800-
204 2019). See also Appendix C: API Security Challenges.

3.3 Cybersecurity Best Practices

API cybersecurity should be designed using zero trust principles, secure coding practices, and
defensive measures to protect against attack techniques associated with API environments.
Following the best practices in this section can help programs address the unique challenges
DoD faces in securing its systems and data, resulting in more resilient and secure critical systems
and operational data against potential threats.

Programs should consider the following six best practices when planning to implement an API
project.

3.3.1 Implement Robust Authentication and Authorization Mechanisms

Authentication and authorization (A&A) in an API and data service environment is expected to
require internal A&A centralized architecture because of the sheer number of APIs and services
interacting. Associated dependencies are realized from using loosely coupled and smaller
application bases. The following security controls are recommended:

1. Robust authorization services to ensure availability and timeliness for access decisions.
2. Authentication to API with access to sensitive data will not use API keys (traditional

embedded keys) in requests.
3. Digitally signed authentication tokens.
4. If an API key is used, restrictions on where the API and applications may be used.
5. A&A token expiration times as short as possible.

3. Cybersecurity

API TECHNICAL GUIDANCE
14

6. A&A token keys produced dynamically in the API and service process using variables
represented from the exchange environment.

7. Integration with zero trust, for single use or very short time to live (TTL) tokens.

3.3.2 Ensure Input Validation and Output Encoding

Input validation and output encoding are crucial for secure data exchange. They provide a
foundation for mitigating API cybersecurity threats, especially within the zero trust framework
and the specific security challenges the Department faces. Input validation involves verifying
and sanitizing user input to prevent malicious code injection and to ensure that only valid and
expected data is processed. Output encoding, on the other hand, converts untrusted data into a
safe format to prevent XSS attacks and the execution of malicious code in users’ browsers. By
implementing robust input validation and output encoding practices, the DoD can enhance the
security of its APIs, protect sensitive data, and reduce the risk of unauthorized access or
manipulation. These measures align with the principles of zero trust, which emphasizes
continuous verification and strict access controls to mitigate the impact of potential security
breaches.

3.3.3 Encrypt and Protect Data in Classified Environment

Encryption and data protection play a critical role in mitigating API cybersecurity threats,
particularly in a highly classified environment within the DoD and in alignment with the zero
trust framework. In a highly classified environment, sensitive information must be securely
transmitted and stored to prevent unauthorized access or disclosure. Encryption ensures that data
is transformed into an unreadable format, making it inaccessible to unauthorized individuals. By
implementing strong encryption algorithms and secure key management practices, the DoD can
protect the confidentiality and integrity of its data, even in the event of a breach. This protection
aligns with the principles of zero trust, which emphasizes the need to verify and protect data at
all stages of its life cycle, regardless of the network or environment in which it resides.

3.3.4 Monitor and Log for Early Threat Detection and Response

Monitoring and logging are essential components for early threat detection and response in the
context of API cybersecurity threats. By implementing robust monitoring and logging practices,
the DoD can continuously monitor its APIs and systems for suspicious activities, unauthorized
access attempts, and potential security breaches. This monitoring enables the timely detection of
threats and facilitates a rapid response to mitigate the impact of any potential breaches. In
addition, comprehensive logging allows for detailed analysis and investigation of security
incidents, aiding in the identification of vulnerabilities and the implementation of necessary

3. Cybersecurity

API TECHNICAL GUIDANCE
15

remediation measures. These monitoring and logging practices align with the principles of zero
trust.

3.3.5 Tailor API Gateway and Firewall Protection to DoD Requirements

Since the API gateway is the primary component to effective API implementation, management,
and security, it should be equipped with infrastructure services appropriate to mitigate the
growing list of threats. At the least, these enterprise services should include service discovery,
authentication and access control, load balancing, caching, application aware health checking,
attack detection, security logging and monitoring, and circuit breakers (NIST SP 800-204).

Specific security strategies for API gateway (GW) include (NIST SP 800-204):

1. Integrate an identity management application to provision credentials before API
activation.

2. API GW should have a connector to generate an access token for a client request.

3. Securely (HTTPS, SSH, OpenSSH, Type1 NSA) channel all traffic to a monitoring and
analytics solution for attack detection and performance degradation.

4. Ensure distributed API GW deployments and microgateways (GW customized and closer
to API and service) include a token exchange service between GWs. Edge GWs should
have tokens with broader permissions, and internal microgateways should have more
narrowly defined permissions, enabling a least privilege paradigm.

Securing API Service Discovery

Securing API service discover is a security mitigation for availability (i.e., part of the
cybersecurity triad of confidentiality, integrity, and availability) and location of services when
and where needed. This is especially important when services in virtual and cloud environments
may have to be replicated and relocated for a number of reasons, including security. Service
discovery must be able to facilitate the clients and service connection while ensuring the services
relayed are the valid service.

Loose coupling should be used, and APIs should not include self-registration and deregistration
capability. If an API and associated service crash or are unable to handle requests, the inability to
perform deregistration affects the integrity of the data and information sharing process. Reliance
on API local cache data should be used only if dependent servers are unavailable

3. Cybersecurity

API TECHNICAL GUIDANCE
16

Implementing Circuit Breakers in API and Services to Prevent Cascading Failures

Circuit breakers are a common technical implementation for minimizing cascading failures. It
prevents delivery to an API and associated service that is failing. This helps prevent security
attacks such as denial of service and brute force attempts (i.e., login attempts, erroneous inputs,
and code injects). Three options for deploying circuit breakers are client-side, server-side, and
Proxy implementation. It is recommended that proxy circuit breaker be implemented. This
avoids placing trust on clients and APIs.

Data Integrity Assurance

Data integrity assurance is the assurance that digital information is uncorrupted and can only be
accessed or modified by those authorized to do so. There are 4 types of data integrity to consider:
entity, referential, domain and user-defined. Data integrity assurance is a critical consideration
for APIs and their underlying data.

Other API Security and Release Recommendations

With new APIs, versions, and associated services (Corbo 2023):

1. Canary release tactic should be employed thus limiting the number of requests and use of
a new API. This is to protect failure and erratic behaviors of both clients and API as use
cases may not meet the expectations despite extensive testing.

2. Usage monitoring of existing and new version should steadily increase traffic to new version.

Session Persistence

1. Session information needs to be stored securely.
2. Internal API and service authorization tokens must not be provided to the user.
3. User session tokens must not be provided beyond GW used for policy decisions.

3.3.6 Ensure API Security Testing and Compliance in the DoD

By conducting API security testing, the DoD can proactively identify and address potential
security risks, ensure compliance with security standards and regulations, and enhance the
overall security posture of its systems and data. These testing practices are crucial for
maintaining the integrity, confidentiality, and availability of APIs within the DoD environment.

Types of API Security Testing Relevant to the DoD

Several types of testing are relevant for DoD APIs, including (1) functional testing, which
ensures APIs perform as intended and handle inputs correctly; (2) penetration testing, which

3. Cybersecurity

API TECHNICAL GUIDANCE
17

simulates real-world attacks to identify vulnerabilities and weaknesses; (3) fuzz testing, which
involves sending unexpected or malformed data to an API to uncover potential security flaws;
and (4) security code reviews, which involve analyzing API source code to identify security
vulnerabilities.

Common Tools and Techniques for API Security Testing in a Defense Context

Tools and techniques to ensure compliance in API security testing include OWASP ZAP, Burp
Suite, JMeter, Postman and Nessus, which help identify vulnerabilities and weaknesses in APIs.
These tools and techniques allow DoD to proactively identify and address potential security
risks, ensure compliance with security standards and regulations, and enhance the overall
security posture of systems and data.

API Security Testing and Compliance within the DoD

DoD can follow several best practices to improve API security testing and compliance.
Functional testing, penetration testing, fuzz testing, and security code are essential to identify
vulnerabilities and weaknesses in APIs. Regularly updating and patching APIs, as well as
monitoring and logging API activities, can help a program detect and respond to potential
security incidents. Adhering to industry standards and regulations, such as those outlined by the
DoD and NIST, is essential for maintaining compliance.

Adherence to DoD Enterprise Standards

The DoD Enterprise DevSecOps guidance (DevSecOps Reference Architecture 2023) is the
Department’s primary guidance to develop and deliver secure software using modern practices.
The guidance outlines principles including API security testing that aligns with industry best
practices and supports the DevSecOps culture. NIST and other industry standards also help
ensure APIs meet operational security requirements.

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
18

4 Design and Implementation Principles

To ensure the success of an API project, an “API-first” strategy emphasizes the key principles of
modularity, scalability, and reusability. By adopting this strategy, a program places priority on
the design and development of the API before implementing the underlying system. Creating a
modular architecture enables scaling, reuse across various applications and platforms, and
seamless integration, flexibility, and enhancements. This approach also encourages a more
efficient and collaborative development process, allowing teams to work in parallel, with front-
end and back-end developers focusing on the team’s areas of expertise. Ultimately, an API-first
strategy sets the stage for a robust and adaptable system that can meet the evolving
organizational and stakeholder needs. The following paragraphs discuss seven design and
implementation principles that support an API-first strategy.

4.1 Common Data Model

It is essential to establish a Common Data Model (CDM) early in the design and implementation
phase that can be used across all API endpoints. This CDM serves as a standardized schema or
structure for organizing and sharing data, ensuring consistency and interoperability between
different API components and applications. Defining a common data model creates an
understanding of how data should be shaped and shared, enabling rapid unification of data and
facilitating seamless integration between various systems and services. This promotes data
consistency, reduces complexity, and enhances data interoperability, allowing different
applications to communicate effectively and exchange information seamlessly.

Implementing a CDM not only streamlines the development process but also improves data
quality, accuracy, and reliability, as it eliminates the need for data mapping and transformation
between different systems. In addition, the CDM enables easier data integration with industry-
wide standards and frameworks, facilitating collaboration and data exchange with external
partners and stakeholders. Early and comprehensive adoption of a common data model
establishes a solid foundation for the API ecosystem, ensuring consistency and interoperability
throughout the entire system.

4.2 Open Standards and Protocols

In the design and implementation phase, the API project should leverage open standards and
protocols to ensure compatibility and interoperability with other systems and applications.
Adoption of widely accepted standards such as Representational State Transfer (REST),
Extensible Markup Language (XML), and JavaScript Object Notation (JSON) helps enable
seamless communication and data exchange between different components of the API
ecosystem.

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
19

REST provides a lightweight and scalable architectural style for designing networked
applications, while JSON offers a simple, compact and human-readable format for representing
data. These open standards promote flexibility, allowing developers to easily integrate with the
API, reducing the learning curve associated with understanding proprietary protocols.

In addition, incorporating Open Authorization (OAuth) as a security protocol enhances the
security and trustworthiness of the API. OAuth enables secure and delegated access to protected
resources by providing a standardized framework for authentication and authorization. OAuth
ensures that only authorized users or applications can access sensitive data or perform specific
actions within the API. This protection not only enhances the security of the API but also
simplifies the integration process for developers, as they can leverage existing OAuth libraries
and frameworks to handle authentication and authorization (OAuth 2.0 2023).

Embracing open standards and protocols will lead to an API ecosystem that is compatible with a
wide range of systems and applications. This approach promotes interoperability, allowing the
API to seamlessly integrate with existing infrastructure and enabling developers to leverage
existing knowledge and tools. The use of open standards reduces vendor lock-in and fosters a
collaborative development environment, as developers can easily understand and work with the
API. Overall, adopting open standards and protocols is a key aspect of designing and
implementing an API that is accessible, interoperable, and developer friendly.

Given the DoD’s global operation environment, across all time zones, one important standard to
consider is the use of the ISO-8601 (2019) date and time format, which supports a variety of
flexible use cases and formatting options. ISO-8601 allows local date and time to be expressed
using a time zone designator, with extreme precision. ISO-8601 is critical in supporting
interoperability between theater, combatant commands, and continental U.S. C2 environments.

4.3 Design for Security Compliance

For the DoD, designing the API with security compliance in mind is critical. Incorporating
security measures from the outset protects the API from unauthorized access and potential data
breaches.

One of the main security protocols to consider is Secure Sockets Layer/Transport Layer Security
(SSL/TLS), which provides encryption and secure communication between clients and servers.
Implementing SSL/TLS ensures that data transmitted between the API and its consumers is
encrypted, preventing eavesdropping and unauthorized interception of sensitive information.

In addition, using industry-standard authentication and authorization protocols such as OAuth
and JWT (JSON Web Tokens) enhances the security of the API. OAuth enables secure and
delegated access to protected resources, ensuring that only authorized users or applications can

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
20

access specific endpoints or perform certain actions. JWT provides a secure method for
transmitting claims or assertions between parties, allowing for secure authentication and
authorization.

API projects should design the API with security compliance in mind to establish a robust
security framework that protects sensitive data and prevents unauthorized access. This
framework not only safeguards the integrity and confidentiality of the API but also helps to
satisfy industry and regulatory compliance requirements. It is important to stay up to date with
the latest security best practices and regularly review and update security measures and address
emerging threats and vulnerabilities.

Overall, incorporating industry-standard security protocols such as SSL/TLS, OAuth, and JWT
into the API design ensures that security is a fundamental aspect of the API ecosystem,
protecting data and the privacy of your users (e.g., soldier PII, medical systems PHI).

4.4 Developmental Testing and Validation Processes

Establishing a robust testing and validation process to ensure the quality and reliability of the
APIs is also essential. By implementing comprehensive testing methodologies including unit,
integration, and section tests, issues or vulnerabilities can be identified and addressed before they
reach the production environment. Three common testing concepts in a robust process are unit
testing, integration testing, and end-to-end testing.

Unit testing involves testing individual components or units of code to ensure they function
correctly in isolation. Unit tests help identify and fix bugs, validate the behavior of individual
functions or modules, and provide a solid foundation for building more complex features.

Integration testing involves testing the interaction between different components or modules
within the API to ensure they work together seamlessly. Integration tests help identify any issues
that may arise when different parts of the API are combined, ensuring the overall functionality
and reliability of the system. Integration testing between components and the APIs that support
them is also necessary to validate the APIs themselves are functioning correctly.

End-to-end testing validates the entire flow of the API, simulating real-world scenarios and user
interactions. This type of testing ensures that all components, integrations, and dependencies
work together as expected, providing a holistic view of the API’s performance and functionality.

By implementing a comprehensive testing and validation process, any issues or bugs can be
identified and addressed early in the development cycle, reducing the risk of encountering
problems in the production environment. This helps ensure that the API functions as intended,
delivers the expected results, and provides a positive user experience.

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
21

API projects should automate testing processes as much as possible, using tools and frameworks
that facilitate test automation. Automation allows for faster and more efficient testing, enabling
continuous integration and deployment practices. In addition, incorporating security testing, such
as penetration testing and vulnerability scanning, helps identify and mitigate potential security
risks.

A robust testing and validation process is crucial for ensuring the quality, reliability, and security
of an API. By conducting thorough unit, integration, and end-to-end testing, any issues can be
identified and addressed early on, leading to a more stable and reliable API.

4.5 Collaboration and Communication

Collaboration and communication among developers, architects, and other stakeholders are
essential elements in the successful development and implementation of APIs. A collaborative
culture with fluid communication paths and consistent internal feedback loops helps to ensure
that the API will meet the needs and expectations of all parties involved. In addition, this
communication helps establish a culture of psychological safety (McKinsey & Company 2023)
and professionalism that focuses on respect for all team members.

API development also requires close collaboration between consumers and producers.
Consumers need to stay up to date on the latest changes to how the API works, while producers
need feedback from consumers to ensure they are building the right thing. A communication plan
facilitates frequent and iterative information flow to the consumers, provides consumer feedback,
provide recommendations, and allows reporting on issues and bugs. In addition, holding weekly
scrums or monthly “ask me anything” engagements further enhances the relationship. Lastly,
fostering a culture of collaboration helps create a robust feedback cycle that allows producers to
better understand consumer needs and supports continuous improvement and iteration.

To facilitate collaboration and communication, teams can use tools such as API documentation,
developer portals, ChatOps, collaboration software, and forums. API documentation serves as a
comprehensive resource that provides information on how to use the API, its endpoints,
parameters, and response formats. Developer portals act as a centralized hub where developers
can access documentation, explore API features, and engage with the API community. Chatops
typically provides a highly interconnected environment across topic threads to get immediate
answers from appropriate team members. Collaboration software typically provides an
ecosystem of online collaborative tasking, communications and meeting capabilities. Forums
provide a platform for developers to ask questions, share insights, and provide feedback on the
API. Consider experimentation and pilots to establish which tools are most effective.

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
22

API projects should use these and other effective tools to create an environment that encourages
open communication and collaboration. This open environment enables API developers,
architects, and other stakeholders to share ideas, address concerns, and work together toward
building a robust and user-friendly API.

Overall, encouraging collaboration and communication is crucial for the success of an API
project. Fostering a collaborative environment and using tools facilitates effective
communication, enhances feedback for all parties involved, and delivers a seamless experience
for API consumers.

4.6 API Parameters for Pagination, Sorting, and Filtering

Pagination is essential when dealing with large result sets. By using parameters such as “limit”
and “offset,” clients can control the number of items returned per page and navigate through the
result set. This approach prevents overwhelming the client with a massive amount of data and
improves performance by reducing the payload size.

Sorting is another important capability that can be achieved through API parameters. Clients can
specify the sorting criteria using parameters like “sort” and “order.” This allows them to retrieve
data in a specific order, such as ascending or descending based on a particular field. Sorting
empowers clients to organize and analyze the data according to their requirements.

Use of filtering is critical for harnessing the power of APIs. Filtering allows retrieval of data
based on specific criteria (e.g., datetime, domain, category, location) and reduces and/or
eliminates the amount of irrelevant information retrieved. For larger data sets, filtering can
significantly improve performance and efficiency of request responses, post-result processing,
network communications, and system utilization.

API parameters provide flexibility and customization options to clients, allowing them to tailor
the API responses to their specific requirements. By supporting pagination, sorting, and filtering
capabilities through parameters, APIs can deliver a more efficient and personalized experience to
clients. It is important for API developers to design and document these parameters effectively,
ensuring that clients understand how to use them correctly and take full advantage of the API’s
capabilities.

Overall, API parameters are a powerful tool for enhancing the usability and efficiency of REST
APIs. They enable clients to control the data they receive, navigate through large result sets, sort
data according to their needs, and filter out irrelevant information. By incorporating these
capabilities into API design, developers can provide a more flexible and user-friendly experience
for API consumers.

4. Design and Implementation Principles

API TECHNICAL GUIDANCE
23

4.7 API Metrics

Several key metrics should be considered when measuring API performance and effectiveness.
Metrics help assess the performance, availability, and usage of APIs. Some API-specific metrics
include:

1. Response Time: Measures the time it takes for an API to respond to a request. This
metric helps understand the performance of the API and identify any bottlenecks or
latency issues.

2. Error Rate: Tracks the percentage of API requests that result in errors. This metric helps
identify any issues with the API’s functionality or stability.

3. Availability: Monitors the uptime and availability of the API. This metric helps ensure
that the API is accessible to users and identifies any downtime or service interruptions.

4. Usage and Traffic: Measures the number of requests and the volume of data being
processed by the API. This metric helps understand the usage patterns and scalability
requirements of the API.

5. Latency: Measures the time it takes for data to travel from the client to the API server and
back. This metric helps identify any network or infrastructure-related issues that may
impact API performance.

6. Rate Limiting: Monitors the number of requests per second or minute to enforce rate
limits and prevent abuse or overload of the API.

7. Authentication and Authorization: Tracks the success rate of authentication and
authorization processes for the API. This metric helps ensure the security and integrity of
the API.

8. SLA Compliance: Measures the compliance of the API with the defined Service-Level
Agreements (SLAs). This metric helps assess whether the API is meeting the
performance and availability targets set for it.

These metrics will provide valuable insights into the performance, usage, and reliability of the
APIs. Regularly monitor and analyze these metrics to identify areas for improvement and make
data-driven decisions to optimize your API’s performance and improve user experience.

It is important to define specific goals and thresholds for each metric based on system
requirements and consumer expectations.

5. Conclusion

API TECHNICAL GUIDANCE
24

5 Conclusion

This document has underscored the significance of existing APIs in supporting improved
interoperability in DoD systems. APIs are essential to interoperability, facilitating data sharing
and integration between diverse systems and applications. As technology evolves, so will APIs,
bringing enhanced capability and functionality. Embracing these future technologies will not
only enhance the DoD’s agility, efficiency, and effectiveness but also will empower U.S.
warfighters with the most advanced tools and information to succeed in their missions.

Adopting APIs will be challenging. A concerted effort of clear communications, comprehensive
training, and active stakeholder engagement will help the Department to overcome cultural and
other challenges for enhanced joint mission interoperability. Success may require changes to
organizational constructs, acquisition processes, and the acquisition pathways. It is vital to
involve all stakeholders, from leadership to developers and end-users. A culture of openness and
collaboration will help ensure programs develop future systems equipped to leverage APIs for
enhanced interoperability.

While enabling access to sensitive data and functionalities, APIs can be potential targets for
malicious actors. The DoD is prioritizing robust security measures, such as authentication,
authorization, encryption, and continuous monitoring, to safeguard the confidentiality, integrity,
and availability of its APIs. Privacy considerations data anonymization and consent management
with regard to warfighter and non-warfighter personal information should be integral to API
design and implementation to protect this vital information.

This document underscores the need for the DoD to proactively embrace future technologies
while effectively managing the cultural shift required for their adoption. By recognizing the
potential of future technologies, implementing robust change management strategies, and
prioritizing security and privacy, the DoD can successfully adopt APIs. This effort will not only
enhance operational capabilities but also ensure warfighters and programs developing future
systems are equipped with the most advanced and interoperable tools to achieve their mission
objectives.

Appendix A. API Project Governance Considerations

API TECHNICAL GUIDANCE
25

Appendix A: API Project Governance Considerations

The API project team should consider the following factors (Table A-1) when designing or
updating an API framework, ecosystem, model or standard for DoD use.

Table A-1. API Project Governance Considerations

Factor Consideration

API Strategy

The API project should communicate its approach to interoperability prior to starting system
development. The intent of this document is to establish a vision and initial plans to facilitate
understanding by stakeholder. This includes envisioned near-term capability and possible
evolutions for the future. This would also include a definition of scope of the API, describing
what would be considered valid solution space for the API now and in the future. This
strategy should be updated as the program evolves.

Use Cases

The API project should provide comprehensive use case descriptions and diagrams of how
the API is intended to be used. This allows the potential consumers to validate if the API
meets the intended requirements. This may not preclude them from using it in new ways but
is another way to describe how the API structure came to be what it is and more quickly
understand its design. This also describes the problem space chosen for the API in the
strategy and allows current and future stakeholders a way to communicate new and
unforeseen needs.

API Contracts

The API project should describe Service Life Agreement (SLA) rules that should be followed
for use of the API including Non-Functional Requirements (NFRs). The API contract should
also provide API usage description information including inputs and outputs (Sindall 2020).

Hosting

The API project should describe how the API services are to be hosted and their required
reliability.

API Project
Performance and
Design

The API project should describe what performance criteria the API functions and responses
must meet.

Registry and
Discovery

The API project should describe how the API discovery process will work. This will include a
discussion of service catalog, registry categorization, and interaction styles (e.g., REST,
stateful).

Scalability

The API project should describe scalability requirements.

Transport

The API project should describe what type of transport services the APL will use. These
descriptions include the required network communication frameworks (e.g., HTTPs, FTPs);
data serialization (e.g., XML, JSON, ASN.1, etc.); and network confidentiality, integrity, and
nonrepudiation approaches.

Appendix A. API Project Governance Considerations

API TECHNICAL GUIDANCE
26

Factor Consideration

Security The API project should describe the general security framework in which the API resides
and what parts of the security framework need to be instituted. This at least includes the
required authentication, authorization, and “need to know” checks.

Design The API project should describe how stakeholder’s inputs are taken into account for the
project during the initial and follow-up updates. Also describe the API design patterns,
caching requirements, data retrieval function, and data semantics. Information models used
and fault tolerant flows (Sindall 2020).

Quality Reviews The API project should describe how API ecosystem design and implementation quality
reviews will be done to ensure the API meets the API standard and has the desired
attributes. Ensure governance rules are met before deployment (Sindall 2023).

Testing The API project plan should describe how the API is tested prior to being deployed as well
as the processes used to quickly and consistently test updates via automation to the API.
This may include automated governance checks (Sindall 2020).

Deployment The API project should describe the deployment approach such as API Library versus
several libraries/formats. Also, describe the registration, setup, configuration sequences that
allow quick onboarding.

Feedback The API project should describe how stakeholders and developers can provide
improvements, suggestions, report issues, and raise concerns about API not performing as
documented.

Versioning and
Backwards
Compatibility

Establishing a versioning and backwards compatibility plan is critical for ensuring changes
to the APIs do not break existing integrations. Implementing a comprehensive versioning
strategy from the outset provides a clear upgrade path for API consumers and avoids any
workflow disruptions.

One key consideration is the use of semantic versioning, a widely adopted three-part
version numbering scheme (i.e., major.minor.patch). Major version changes indicate
significant changes that may break backwards compatibility. Minor version changes indicate
new features or functionality that are backwards compatible. Patch version changes indicate
bug fixes or minor updates that are fully backwards compatible. Use of this scheme
communicates API changes and provides predictable upgrade paths for users. Thus,
existing integrations will continue to function as expected, while also allowing for the
introduction of new features and functionality.

Another key consideration is planning for backwards compatibility. Backwards compatibility
ensures that existing integrations continue to function correctly, even when changes are
made to the API. This can be achieved by maintaining existing endpoints, providing fallback
mechanisms, or implementing versioning strategies that allow for multiple versions of the
API to coexist.

Planning for both versioning and backwards compatibility from design to implementation
ensures that the API remains stable, reliable, and functional over time. This builds trust and
confidence with API users and ensures that the API continues to meet their needs and
expectations.

Appendix A. API Project Governance Considerations

API TECHNICAL GUIDANCE
27

Factor Consideration

Updating The API project should describe how an API framework is updated and issue any new
release of the updated API implementation. This creates a robust API versioning approach
(Sindall 2023).

Deprecating The API project should describe how the API should handle planning and timing of
removing aspects of the API that are no longer desired or have been replaced by improved
functionality.

Tracking Use The API project should describe how the project can track use of the API, if applicable.
Where applicable this can help create new use case and business case support for the
changes.

Telemetry For further information on metrics to track performance, scalability, security, and tracking
use, see metrics section in Design and Implementation section.

Appendix B. Common API Vulnerabilities and Threats

API TECHNICAL GUIDANCE
28

Appendix B: Common API Vulnerabilities and Threats

The following are some of the most common API vulnerabilities and threats:

• Injection Attacks - Injection attacks occur when an attacker sends malicious input to an
API with the intent of executing unauthorized commands or accessing sensitive data.
Common types of injection attacks include SQL injection, XML injection, and command
injection. Injection attacks can be particularly dangerous in the context of the DoD, as
they can be used to gain unauthorized access to sensitive systems and data.

• Cross-Site Scripting (XSS) Attacks - XSS attacks occur when an attacker injects
malicious code into a web page or API response, which is then executed by a user’s
browser. This can allow the attacker to steal sensitive data or perform unauthorized
actions on behalf of the user. XSS attacks can be particularly dangerous in the context of
the DoD, as they can be used to compromise user accounts and gain access to sensitive
systems and data.

• Denial-of-Service (DoS) and Distributed Denial of Service (DDoS) Attacks - DoS attacks
occur when an attacker floods an API with requests in an attempt to overwhelm the
system and prevent legitimate users from accessing it. DoS and especially DDoS attacks
can be particularly damaging in the context of the DoD, as they can disrupt critical
systems and services.

• Insufficient Authentication and Authorization - Insufficient authentication and
authorization can occur when an API does not properly verify the identity of users or
restrict access to sensitive data and systems. This can allow unauthorized users to access
sensitive data and systems, potentially leading to data breaches and other security
incidents.

• Insecure Data Storage - Insecure data storage can occur when an API stores sensitive data
in an unencrypted or otherwise insecure manner. This can allow attackers to steal
sensitive data, such as passwords and other credentials, and use it to gain unauthorized
access to systems and data.

• XML External Entity (XXE) Attacks - XXE (XML External Entity) attacks are a type of
injection attack that can be used to exploit vulnerabilities in APIs that process XML data.
XXE attacks are a significant API vulnerability and threat because they can be used to
gain unauthorized access to sensitive data and systems. In the context of the DoD, XXE
attacks can be particularly dangerous as they can be used to compromise critical systems
and services. To mitigate the risk of XXE attacks, it is important to implement strong API
security measures, such as input validation to prevent injection attacks, and to use secure
XML parsers that are not vulnerable to XXE attacks.

Appendix B. Common API Vulnerabilities and Threats

API TECHNICAL GUIDANCE
29

• Insecure Data Transmission - Unsecure data transmission is an API vulnerability and
threat that occurs when data is transmitted over a network in an unencrypted or otherwise
insecure manner. This can allow attackers to intercept and read sensitive data, such as
passwords and other credentials, and use it to gain unauthorized access to systems and
data. To mitigate the risk of unsecure data transmission, it is important to use strong
encryption mechanisms, such as TLS (Transport Layer Security), to protect data in
transit.

• Improper Access Controls and Authorization Flaws - Improper access controls and
authorization flaws are an API vulnerability and threat that occur when an API does not
properly restrict access to sensitive data or functionality. This can allow attackers to gain
unauthorized access to systems and data, potentially leading to data breaches and other
security incidents. To mitigate the risk of improper access controls and authorization
flaws, it is important to implement strong access controls and authorization mechanisms,
such as role-based access control (RBAC) and attribute-based access control (ABAC).

• Security Misconfigurations and Improper Error Handling - Security misconfigurations
and improper error handling are an API vulnerability and threat that occur when an API
is not properly configured or when errors are not handled in a secure manner. This can
allow attackers to exploit vulnerabilities in the API and gain unauthorized access to
systems and data. To mitigate the risk of security misconfigurations and improper error
handling, it is important to implement strong security configurations and to properly
handle errors in a secure manner.

• Insider Threats and Unauthorized Access - Insider threats and unauthorized access are
API vulnerabilities and threats that occur when individuals with authorized access to an
API misuse their privileges or when unauthorized individuals gain access to the API. This
can lead to unauthorized disclosure, modification, or destruction of sensitive data, as well
as disruption of services. To mitigate the risk of insider threats and unauthorized access,
it is important to implement strong access controls, such as RBAC and least privilege
principles. Regular monitoring and auditing of API activities can also help detect and
prevent unauthorized access. In addition, implementing strong authentication
mechanisms, such as multi-factor authentication (MFA), can further enhance security and
protect against unauthorized access.

Appendix C: API Security Challenges

API TECHNICAL GUIDANCE
30

Appendix C: API Security Challenges

C.1 Injection Attacks and Their Impact on Mission-Critical Systems

Injection attacks pose a significant threat to mission-critical systems within the DoD context.
These attacks involve the introduction of malicious data or code into a system, exploiting
vulnerabilities to manipulate system behavior, compromise data integrity, or gain unauthorized
access. In the DoD context, where mission-critical systems are integral to intelligence, command
and control of military forces, weapons systems, and fulfilling military requirements, the impact
of injection attacks can be severe. They can disrupt operations, endanger operator safety,
compromise sensitive information, and potentially jeopardize national security. The DoD’s
cybersecurity initiatives aim to mitigate such threats through secure coding practices, automated
security testing, and continuous monitoring; however, the evolving nature of injection attacks
and the complexity of DoD systems present ongoing challenges.

C.2 Authentication and Authorization Issues in a Multi-Domain Environment

Authentication and authorization in a multi-domain environment within the DoD context present
unique security challenges. Authentication, the process of verifying the identity of a user, device,
or system, and authorization, the process of granting or denying access rights to resources, are
critical for maintaining the security and integrity of DoD systems. In a multi-domain
environment, where resources and users are distributed across various domains, ensuring
consistent and secure authentication and authorization becomes complex. This complexity can
lead to potential vulnerabilities, such as unauthorized access or privilege escalation. The DoD
addresses these challenges through robust MFA, RBAC, and ABAC mechanisms, along with
continuous monitoring and auditing; however, the dynamic nature of multi-domain environments
and the evolving threat landscape continue to pose significant challenges.

C.3 Data Breaches and Protection of Sensitive Information

Data breaches and the protection of sensitive information are significant security challenges
within the DoD context. The DoD manages vast amounts of sensitive data, including classified
military information, personnel records, and intelligence data. Data breaches can lead to the
exposure of this sensitive information, with potential impacts on national security, operational
effectiveness, and the privacy of personnel. The DoD has experienced significant data breaches
in the past, highlighting the importance of robust data protection measures. These measures
include data encryption, secure data handling practices, and continuous monitoring for potential
threats. However, the complexity of the DoD’s information systems, the sophistication of
adversaries, and the evolving nature of threats continue to pose challenges to the protection of
sensitive information within the DoD.

Appendix C: API Security Challenges

API TECHNICAL GUIDANCE
31

C.4 Service Discovery Threats

The service discovery threats outlined in the “Service Discovery Threat Model for AD HOC
Networks” by Adrian Leung and Chris Mitchell highlight security challenges within the DoD
context. Ad hoc networks, which are dynamic and vulnerable, present unique security and
privacy challenges. Service discovery, the process of finding and connecting to available
services, is particularly susceptible to threats in these networks. The DoD relies on secure and
reliable service discovery mechanisms to ensure the availability and integrity of critical services.
However, the dynamic nature of ad hoc networks and the potential for malicious actors to exploit
vulnerabilities in service discovery protocols pose significant challenges to the DoD’s ability to
maintain secure and resilient communication and information exchange. Implementing robust
security measures, such as encryption, authentication, and intrusion detection systems, is crucial
to mitigating these threats and ensuring the security of DoD operations in ad hoc network
environments (Leung and Mitchell 2023).

Other related threats include:

• Service Spoofing

• Passive Listening

• Data Alteration

C.5 Cascading Failure

Cascading failure, a phenomenon where the failure of one component triggers a chain reaction of
failures in interconnected systems, poses significant cybersecurity challenges within the DoD. In
the context of API cybersecurity threats, cascading failures can occur when a vulnerable API is
exploited, leading to the compromise of other interconnected APIs or systems. This can have
severe consequences for the DoD, as it relies on a complex network of interconnected systems
and APIs to support critical operations. The potential for cascading failures highlights the
importance of implementing robust security measures, such as secure coding practices,
vulnerability scanning, and continuous monitoring, to prevent and mitigate the impact of API
cybersecurity threats and ensure the resilience and integrity of DoD systems.

Glossary

API TECHNICAL GUIDANCE
32

Glossary

Unless otherwise noted, the following definitions are suggested by the authors of this guide for their relevance to APIs. The definitions
are not intended to be authoritative in all contexts.

Term Description Source

abstraction The process of simplifying complex systems or concepts by focusing on
essential features while hiding unnecessary details.

https://www.imedpub.com/articles
/abstraction-simplifying-
complexity-in-software-
engineering.php?aid=50800#:~:te
xt=Abstraction%20is%20a%20fun
damental%20concept%20in%20s
oftware%20engineering%20that%
20helps,and%20facilitating%20sc
alability%20and%20maintainabilit
y

academia The world of education and research, typically associated with universities and
scholarly activities.

access controls Security measures and policies that determine who is allowed to access or
modify certain resources or data.

acquisition The process of obtaining or procuring something, often used in the context of
acquiring assets or technology.

Adaptive Acquisition
Framework

A set of acquisition pathways to enable the workforce to tailor strategies to
deliver better solutions faster.

https://aaf.dau.edu/

acquisition pathways The various routes or methods used to obtain resources or technology, typically
within a business or organizational context.

acquisition processes The procedures and steps involved in acquiring resources, technology, or
assets, often including planning, procurement, and implementation.

algorithm A procedure for solving a mathematical problem (as of finding the greatest
common divisor) in a finite number of steps that frequently involves repetition of
an operation.

https://www.merriam-
webster.com/dictionary/algorithm

https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://www.imedpub.com/articles/abstraction-simplifying-complexity-in-software-engineering.php?aid=50800#:%7E:text=Abstraction%20is%20a%20fundamental%20concept%20in%20software%20engineering%20that%20helps,and%20facilitating%20scalability%20and%20maintainability
https://aaf.dau.edu/
https://www.merriam-webster.com/dictionary/algorithm
https://www.merriam-webster.com/dictionary/algorithm

Glossary

API TECHNICAL GUIDANCE
33

Term Description Source

application programming
interface (API)

A set of definitions and protocols for building and integrating application
software.

https://www.redhat.com/en/topics/
api/what-are-application-
programming-interfaces

API gateway A data-plane entry point for API calls that represent client requests to target
applications and services. It typically performs request processing based on
defined policies, including authentication, authorization, access control,
SSL/TLS (Secure Sockets Layer/Transport Layer Security) offloading, routing,
and load balancing.

https://www.nginx.com/learn/api-
gateway/#:~:text=An%20API%20
gateway%20is%20a%20data%2D
plane%20entry%20point%20for,
%2C%20routing%2C%20and%20
load%20balancing

API-first Prioritizing the APIs that support your application and focusing on the value
they can deliver to your business, rather than just scrambling to deliver a single
application and creating an API as an afterthought.

https://www.postman.com/api-
first/#:~:text=Being%20API%2Dfir
st%20means%20prioritizing,an%
20API%20as%20an%20afterthou
ght

application aware health
checking

An API monitoring method that checks your API and alerts you when it notices
something is amiss. A diagnostic tool for your code base that can help you find
problems before they become more significant headaches than they need to be.

https://testfully.io/blog/api-health-
check-monitoring/

architects Professionals responsible for designing the overall structure and organization of
software systems or IT infrastructure.

artificial intelligence (AI) A machine’s ability to perform the cognitive functions we usually associate with
human minds.

https://www.mckinsey.com/featur
ed-insights/mckinsey-
explainers/what-is-ai

attack detection Detecting suspicious API traffic. Attack detection is of utmost importance in
today’s digital landscape. With the increasing reliance on APIs for data
exchange between different applications and systems, it has become crucial to
ensure the security and integrity of these interactions.

https://nonamesecurity.com/blog/
how-to-detect-suspicious-api-
traffic/

authentication Carefully and comprehensively identifying all related users and devices.
Typically requires client-side applications to include a token in the API call so
the service can validate the client.

https://www.techtarget.com/searc
happarchitecture/tip/10-API-
security-guidelines-and-best-
practices

https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.nginx.com/learn/api-gateway/#:%7E:text=An%20API%20gateway%20is%20a%20data%2Dplane%20entry%20point%20for,%2C%20routing%2C%20and%20load%20balancing
https://www.postman.com/api-first/#:%7E:text=Being%20API%2Dfirst%20means%20prioritizing,an%20API%20as%20an%20afterthought
https://www.postman.com/api-first/#:%7E:text=Being%20API%2Dfirst%20means%20prioritizing,an%20API%20as%20an%20afterthought
https://www.postman.com/api-first/#:%7E:text=Being%20API%2Dfirst%20means%20prioritizing,an%20API%20as%20an%20afterthought
https://www.postman.com/api-first/#:%7E:text=Being%20API%2Dfirst%20means%20prioritizing,an%20API%20as%20an%20afterthought
https://www.postman.com/api-first/#:%7E:text=Being%20API%2Dfirst%20means%20prioritizing,an%20API%20as%20an%20afterthought
https://testfully.io/blog/api-health-check-monitoring/
https://testfully.io/blog/api-health-check-monitoring/
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
https://nonamesecurity.com/blog/how-to-detect-suspicious-api-traffic/
https://nonamesecurity.com/blog/how-to-detect-suspicious-api-traffic/
https://nonamesecurity.com/blog/how-to-detect-suspicious-api-traffic/
https://www.techtarget.com/searchapparchitecture/tip/10-API-security-guidelines-and-best-practices
https://www.techtarget.com/searchapparchitecture/tip/10-API-security-guidelines-and-best-practices
https://www.techtarget.com/searchapparchitecture/tip/10-API-security-guidelines-and-best-practices
https://www.techtarget.com/searchapparchitecture/tip/10-API-security-guidelines-and-best-practices

Glossary

API TECHNICAL GUIDANCE
34

Term Description Source

backward compatibility The ability of a RESTful API to handle requests from the clients that use an
older version of the API without breaking or returning errors. Reduces the
friction and cost for the clients to upgrade to the new version of the API. Also
preserves the trust and reliability of the web service, as the clients can expect
the API to work as intended.

https://www.linkedin.com/advice/0
/how-do-you-design-restful-api-
supports#:~:text=Backward%20c
ompatibility%20is%20the%20abili
ty,new%20version%20of%20the
%20API

canary release A technique to reduce the risk of introducing a new software version in
production by slowly rolling out the change to a small subset of users before
rolling it out to the entire infrastructure and making it available to everybody.

(Sato 2014)
https://martinfowler.com/bliki/Can
aryRelease.html

circuit breakers Wrapping a protected function call in a circuit breaker object, which monitors for
failures. Once the failures reach a certain threshold, the circuit breaker trips,
and all further calls to the circuit breaker return with an error, without the
protected call being made at all. Usually involves a monitor alert if the circuit
breaker trips.

(Sato 2014)
https://martinfowler.com/bliki/Circ
uitBreaker.html

code review The act of consciously and systematically convening with one’s fellow
programmers to check each other’s code for mistakes; shown to accelerate and
streamline the process of software development as few other practices can.

https://smartbear.com/learn/code-
review/what-is-code-review/

common data model
(CDM)

Contains a uniform set of metadata, allowing data and its meaning to be shared
across applications. In addition to the uniform metadata, a CDM includes a set
of standardized, extensible data schemas that include items such as entities,
attributes, semantic metadata, and relationships. Once all the elements of the
CDM are defined, methods to access and operate on the data are developed so
all applications can use these same, standardized procedures.

https://www.synopsys.com/glossa
ry/what-is-common-data-
model.html

communication
frameworks

Software libraries or protocols that facilitate communication and data exchange
between software components or systems.

confidentiality The principle of protecting sensitive or confidential information from
unauthorized access or disclosure.

Conway’s Law Essentially the observation that the architectures of software systems look
remarkably similar to the organization of the development team that built it.

https://martinfowler.com/bliki/Con
waysLaw.html

https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://www.linkedin.com/advice/0/how-do-you-design-restful-api-supports#:%7E:text=Backward%20compatibility%20is%20the%20ability,new%20version%20of%20the%20API
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://smartbear.com/learn/code-review/what-is-code-review/
https://smartbear.com/learn/code-review/what-is-code-review/
https://www.synopsys.com/glossary/what-is-common-data-model.html
https://www.synopsys.com/glossary/what-is-common-data-model.html
https://www.synopsys.com/glossary/what-is-common-data-model.html
https://martinfowler.com/bliki/ConwaysLaw.html
https://martinfowler.com/bliki/ConwaysLaw.html

Glossary

API TECHNICAL GUIDANCE
35

Term Description Source

cross-site scripting
(XSS)

A type of injection, in which malicious scripts are injected into otherwise benign
and trusted websites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a browser side
script, to a different end user.

https://owasp.org/www-
community/attacks/xss/

cross-site request
forgery (CSRF)

An attack that forces an end user to execute unwanted actions on a web
application in which they are currently authenticated.

https://owasp.org/www-
community/attacks/csrf

(Agile) culture At an enterprise level, moving strategy, structure, processes, people, and
technology toward a new operating model by rebuilding an organization around
hundreds of self-steering, high-performing teams supported by a stable
backbone.

https://www.mckinsey.com/capabi
lities/people-and-organizational-
performance/our-insights/doing-
vs-being-practical-lessons-on-
building-an-agile-culture

cybersecurity (API) Strategies and solutions to understand and mitigate the vulnerabilities and
security risks of Application Programming Interfaces (APIs). APIs are a critical
part of modern mobile, software as a service (SaaS), and web applications and
can be found in customer-facing, partner-facing and internal applications. By
nature, APIs expose application logic and sensitive data such as Personally
Identifiable Information (PII) and because of this have become a target for
attackers. Without secure APIs, rapid innovation would be impossible.

https://owasp.org/www-project-
api-security/

data anonymization The process of removing particular pieces of private information that could be
used to identify a person in data.

https://www.splunk.com/en_us/blo
g/learn/data-anonymization.html

data fabric An architecture and set of data services that provide consistent capabilities
across a choice of endpoints spanning hybrid multicloud environments. A
powerful architecture that standardizes data management practices and
practicalities across cloud, on premises, and edge devices.

https://www.netapp.com/data-
fabric/what-is-data-fabric/

data mesh Principles to help address changes in the data landscape and speed of
response to change: (1) domain-oriented decentralized data ownership and
architecture, (2) data as a product, (3) self-serve data infrastructure as a
platform, and (4) federated computational governance.

https://martinfowler.com/articles/d
ata-mesh-principles.html

data semantics The meaning and interpretation of data, often defined through metadata and
ontologies.

https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/doing-vs-being-practical-lessons-on-building-an-agile-culture
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/doing-vs-being-practical-lessons-on-building-an-agile-culture
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/doing-vs-being-practical-lessons-on-building-an-agile-culture
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/doing-vs-being-practical-lessons-on-building-an-agile-culture
https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/doing-vs-being-practical-lessons-on-building-an-agile-culture
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://www.splunk.com/en_us/blog/learn/data-anonymization.html
https://www.splunk.com/en_us/blog/learn/data-anonymization.html
https://www.netapp.com/data-fabric/what-is-data-fabric/
https://www.netapp.com/data-fabric/what-is-data-fabric/
https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/articles/data-mesh-principles.html

Glossary

API TECHNICAL GUIDANCE
36

Term Description Source

data serialization The process of converting structured data into a format suitable for transmission
or storage, such as JSON or XML.

data visualization The presentation of data in graphical or visual formats to facilitate
understanding and analysis.

data-centric Focusing on the data itself as the central element in system design and
decision-making.

deprecating Phasing out or marking a software feature or API as obsolete, typically with the
intention of removing it in future versions.

developmental test and
validation

The process of verifying whether the specific requirements to test development
stages are fulfilled, based on solid evidence. In particular, test validation is an
ongoing process of developing an argument that a specific test, its score
interpretation, or use is valid.

https://assess.com/test-
validation/#:~:text=Test%20valida
tion%20is%20the%20process,inte
rpretation%20or%20use%20is%2
0valid

DevSecOps A software engineering culture that guides a team to break down silos and unify
software development, deployment, security, and operations. Success in
adopting DevSecOps requires buy-in from all stakeholders, including:
leadership, acquisition, contracting, middle-management, engineering, security,
operations, development, and testing teams. Stakeholders across the
organization must change their way of thinking from “I” to “we,” while breaking
team silos, and understanding that the failure to successfully deliver, maintain,
and continuously engineer software and its underlying infrastructure is the
failure of the entire organization, not one specific team or individual.

https://dodcio.defense.gov/Portals
/0/Documents/Library/DevSecOps
%20Playbook_DoD-
CIO_20211019.pdf

digital modernization The process of updating and adapting an organization’s digital systems and
technologies to meet current and future needs.

ecosystem A community of interconnected components or entities that interact and
influence each other, often used in the context of software or technology.

emerging technology New and cutting-edge technologies that have the potential to disrupt existing
industries or create new opportunities.

https://assess.com/test-validation/#:%7E:text=Test%20validation%20is%20the%20process,interpretation%20or%20use%20is%20valid
https://assess.com/test-validation/#:%7E:text=Test%20validation%20is%20the%20process,interpretation%20or%20use%20is%20valid
https://assess.com/test-validation/#:%7E:text=Test%20validation%20is%20the%20process,interpretation%20or%20use%20is%20valid
https://assess.com/test-validation/#:%7E:text=Test%20validation%20is%20the%20process,interpretation%20or%20use%20is%20valid
https://assess.com/test-validation/#:%7E:text=Test%20validation%20is%20the%20process,interpretation%20or%20use%20is%20valid
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Playbook_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Playbook_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Playbook_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Playbook_DoD-CIO_20211019.pdf

Glossary

API TECHNICAL GUIDANCE
37

Term Description Source

encoding attack An attack in which malicious data or scripts are embedded in input to exploit
vulnerabilities in a system.

encryption The process of converting data into a secure and unreadable format to protect it
from unauthorized access.

enterprise standards Established guidelines, protocols, and best practices that an organization
follows to ensure consistency and interoperability across its systems.

error handling The process of identifying, reporting, and managing errors or exceptions in
software to ensure robustness and graceful degradation.

experimentation The systematic testing and exploration of new ideas, features, or solutions to
gather data and make informed decisions.

fault tolerant The ability of a system to continue functioning or provide degraded service in
the presence of faults or failures.

filtering The process of selecting or extracting specific data or information from a larger
data set based on predefined criteria.

firewall A network security device or software that monitors and controls incoming and
outgoing network traffic to protect against unauthorized access or threats.

frameworks Predefined structures and libraries that provide a foundation for building
software applications.

functional testing Testing that focuses on verifying that the software functions according to
specified requirements and performs its intended tasks.

fuzz testing Also called fuzzing, an automated software testing method that injects invalid,
malformed, or unexpected inputs into a system to reveal software defects and
vulnerabilities. A fuzzing tool injects these inputs into the system and then
monitors for exceptions such as crashes or information leakage. Fuzzing
introduces unexpected inputs into a system and watches to see if the system
has any negative reactions to the inputs that indicate security, performance, or
quality gaps or issues.

https://www.synopsys.com/glossa
ry/what-is-fuzz-testing.html

https://www.synopsys.com/glossary/what-is-fuzz-testing.html
https://www.synopsys.com/glossary/what-is-fuzz-testing.html

Glossary

API TECHNICAL GUIDANCE
38

Term Description Source

(API) governance The processes and controls implemented to manage, monitor, and maintain
APIs (application programming interfaces). It involves defining standards,
policies, and guidelines for API design, development, deployment, and usage.
The goal of API governance is to ensure consistency, security, scalability, and
reliability across all API.

https://nonamesecurity.com/learn/
what-is-api-governance/

Hypertext Transfer
Protocol (HTTP)

A fundamental protocol used for communication on the World Wide Web. It
defines the rules and conventions for transferring text, images, videos, and
other resources between web servers and web clients (typically web browsers).
HTTP operates as a request-response protocol, in which a client (usually a web
browser) sends an HTTP request to a web server, and the server responds with
the requested content or an error message.

HTTP verb tampering An attack in which an attacker manipulates the HTTP request method (HTTP
verb) to perform unauthorized actions on a web application.

identity and access
management

The practices and technologies used to manage and secure digital identities
and control access to resources.

implementation The process of translating a design or plan into a working system or application.

industry A specific sector of economic activity, characterized by similar products,
services, and business practices.

information model A conceptual representation of data and its relationships within a system or
domain.

injection attack An attack in which malicious code or input is injected into an application,
potentially leading to data breaches or system compromise.

integration The process of combining different software systems or components to work
together as a unified whole.

integrity The assurance that data or resources have not been altered or tampered with in
an unauthorized or malicious manner.

intelligence analytics The process of collecting, analyzing, and interpreting data to gain insights and
make informed decisions in intelligence and security contexts.

https://nonamesecurity.com/learn/what-is-api-governance/
https://nonamesecurity.com/learn/what-is-api-governance/

Glossary

API TECHNICAL GUIDANCE
39

Term Description Source

interface A point of interaction between different software components, allowing them to
communicate or exchange data.

interoperability The ability of different systems or components to work together and exchange
data seamlessly.

Joint In a military context, collaborative efforts involving multiple branches or
Services.

landscape The overall view or context of a situation, often used to describe the broad
environment in which a system operates.

lateral movement within
network

A tactic used by attackers to move horizontally within a network after gaining
initial access, often to escalate privileges or reach valuable targets.

legacy system An older or outdated computer system, software, or technology that may still be
in use but is typically less efficient or secure.

load balancing The distribution of network traffic or computing workloads across multiple
servers or resources to ensure optimal performance and reliability.

logging The process of recording events, actions, or transactions in a system for
monitoring, troubleshooting, and auditing purposes.

logistics The planning, management, and coordination of resources, often in the context
of supply chain management.

machine learning (ML) A subset of artificial intelligence (AI) that involves the development of algorithms
and models that allow computers to learn from data and make predictions or
decisions.

maintaining The ongoing process of keeping a system or application operational and up to
date.

mental lock-in A cognitive bias in which individuals become overly committed to a particular
idea or approach, making it challenging to consider alternative solutions.

Glossary

API TECHNICAL GUIDANCE
40

Term Description Source

metrics Quantifiable measures used to assess and evaluate the performance,
effectiveness, or quality of a system or process.

micro-segmentation Network security strategy that divides a network into smaller, isolated segments
to improve security and control.

modeling and simulation The use of mathematical models and computer simulations to replicate real-
world processes or systems for analysis and experimentation.

monitoring The continuous observation and tracking of a system’s performance, behavior,
or security.

networked weapons Military or defense systems that are interconnected and can communicate with
each other for coordinated operations.

nonrepudiation The assurance that a user cannot deny the authenticity or origin of a message
or action they initiated.

open standards and
protocols

Publicly available and widely accepted specifications for communication and
data exchange.

operational Related to the day-to-day activities and functions of an organization or system.

organization constructs The structural elements, roles, and relationships within an organization.

pagination The practice of dividing large sets of data or content into smaller, manageable
pages for display or retrieval.

penetration testing A security assessment where ethical hackers attempt to identify vulnerabilities
in a system by simulating real-world attacks.

performance The ability of a system to execute tasks efficiently and meet specified criteria.

platform A software or hardware environment that provides a foundation for building and
running applications.

policy A set of rules, guidelines, or principles that dictate decisions and actions within
an organization or system.

Glossary

API TECHNICAL GUIDANCE
41

Term Description Source

proactive threat
detection

The practice of identifying and mitigating security threats before they can cause
harm or damage.

program managers Individuals responsible for overseeing and managing projects or initiatives
within an organization.

providers Entities that offer services, resources, or solutions to others.

rapid prototyping The process of quickly creating a working model or prototype of a product or
system to test and validate concepts.

real-time systems Systems that operate and respond to events immediately as they occur.

recursive A process or function that calls itself to solve a problem by breaking it down into
smaller, similar tasks.

Representational State
Transfer (REST)

An architectural style for designing networked applications, often used with
HTTP, emphasizing stateless communication and resource-based URLs.

requirements The specifications and criteria that define what a system or product must
accomplish or include.

Reverse Conway’s
Maneuver

Adapting an organization's structure to align with desired software architecture.

reverse proxy A server that acts as an intermediary between client requests and one or more
backend servers, often used for load balancing, security, and caching.

scalability The ability of a system or application to handle increased workloads or users
without a significant decrease in performance.

secure key management The practices and processes for generating, storing, and protecting encryption
keys.

security breaches Unauthorized access or incidents that compromise the confidentiality, integrity,
or availability of data or systems.

security compliance Adherence to security standards, regulations, and policies to protect against
security threats and vulnerabilities.

Glossary

API TECHNICAL GUIDANCE
42

Term Description Source

security posture The overall security status and readiness of an organization or system.

sensitive information Data that, if disclosed or compromised, could result in harm to individuals or
organizations.

sensor fusion Combining data from multiple sensors or sources to improve accuracy and
reliability in various applications, such as navigation or surveillance.

serialization attack An attack that manipulates the serialization process of data to exploit
vulnerabilities.

service discovery The process of automatically finding and identifying available network services
or resources.

Services For the U.S. Department of Defense, the following Military Services: Army,
Navy, Air Force, Marine Corps, Coast Guard, Space Force, and other
supporting Components.

session persistence The ability to maintain session state or data across multiple interactions or
requests from a user.

social network systems Online platforms and communities where users can connect, share, and interact
with others.

software delivery The process of planning, developing, testing, and deploying software
applications or updates.

sorting Arranging data or elements in a specific order, often numerical or alphabetical.

stakeholders Individuals or groups with an interest or concern in a project, system, or
organization.

statistical analysis The process of analyzing data using statistical methods and techniques to draw
conclusions or make predictions.

strategic objectives Long-term goals and plans that guide an organization’s overall direction and
decision making.

support staff Personnel responsible for assisting users, maintaining systems, and providing
technical support.

Glossary

API TECHNICAL GUIDANCE
43

Term Description Source

system of systems A collection of interconnected and interdependent systems that work together to
achieve a common goal.

tactical Pertaining to short-term, practical, and on-the-ground decisions and actions.

telemetry The remote monitoring and measurement of data, often from distant or
inaccessible locations.

thread detection and
response

The identification and mitigation of threats or malicious activities in computer
systems, networks, or applications.

time to live (TTL) tokens Tokens or data elements with a specified lifespan or expiration time.

tracking use Monitoring and recording how resources or services are used or accessed.

transport systems Infrastructure and technologies used to move people, goods, or data from one
place to another.

unauthorized access
attempts

Efforts to gain unauthorized entry to a system, application, or resource.

vendor lock-in A situation in which a user becomes dependent on a specific vendor's products
or services, making it difficult to switch to alternatives.

versioning The practice of assigning unique version numbers to software or data to
manage changes and updates.

vulnerabilities and
threats

Weaknesses or flaws in systems, applications, or processes that can be
exploited by threats or attackers.

warfighting The conduct of military operations and strategies in armed conflict.

wargames Simulated military exercises or games used for training and strategic planning.

zero trust A security model that assumes no trust by default and requires strict
authentication and authorization for all users and devices, regardless of their
location or network access.

Acronyms

API TECHNICAL GUIDANCE
44

Acronyms

A&A Authentication and Authorization

ABAC Attribute-Based Access Control

AI/ML Artificial Intelligence/Machine Learning

API Application Programming Interface

A&S Acquisition and Sustainment

CDM Common Data Model

CJADC2 Combined JADC2

CSRF Cross-Site Request Forgery

DevSecOps Development, Security, Operations

DISR DoD Information Technology Standards Registry

DoD Department of Defense

DoD CIO Department of Defense Chief Information Officer

DoS Denial-of-Service

GW Gateway

HTTP Hypertext Transfer Protocol

IoMT Internet of Military Things

JADC2 Joint All-Domain Command and Control

JSON JavaScript Object Notation

MFA Multi-Factor Authentication

MOSA Modular Open Systems Approach

MVP Minimum Viable Product

NIST National Institute of Standards and Technology

NFR Non-Functional Requirement

OSI Open System Interconnection

Acronyms

API TECHNICAL GUIDANCE
45

OUSD(A&S) Office of the Under Secretary of Defense for Acquisition and
Sustainment

OUSD(R&E) Office of the Under Secretary of Defense for Research and Engineering

PHI Personal Health Information

PII Personally Identifiable Information

PM Program Manager

RBAC Role-Based Access Control

R&E Research and Engineering

REST Representational State Transfer

SE&A Systems Engineering and Architecture

SLA Service-Level Agreement

SLA Service Life Agreement

SoS System of Systems

SSL/TLS Secure Sockets Layer/Transport Layer Security

TTL Time to Live (Tokens)

URL Uniform Resource Locator

XML Extensible Markup Language

XSS Cross-Site Scripting

References

API TECHNICAL GUIDANCE
46

References

Brady and Dianic. 2022. Data Interoperability. PowerPoint presentation, DoD Enterprise
DevSecOps Community of Practice. https://software.af.mil/wp-
content/uploads/2022/05/05-12-2022-DevSecOps-CoP-Slides-API-2.0-FINAL.pdf.

CJCSI RSI. 2019. CJCSI Rationalization, Standardization, and Interoperability (RSI) Activities.
Chairman of the Joint Chiefs of Staff (CJCS).
https://www.jcs.mil/Portals/36/Documents/Doctrine/allied_doctrine/cjcsi2700_01g.pdf?v
er=fIHUSEemnzzQUMj_sjoOnQ%3D%3D.

Computer Networking Notes. 2023. "OSI Seven Layers Model Explained with Examples."
Computer Networking Notes. August 8. Accessed October 23, 2023.
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-
explained-with-examples.html.

Corbo, Anthony. 2023. "What Is Data Integrity?" Built In. January 3. Accessed October 23,
2023. https://builtin.com/data-science/data-integrity.

DepSecDef. 2021. Creating Data Advantage. Memorandum, Deputy Secretary of Defense
(DepSecDef). https://media.defense.gov/2021/May/10/2002638551/-1/-1/0/DEPUTY-
SECRETARY-OF-DEFENSE-MEMORANDUM.PDF.

DepSecDef. 2019. DoD Software Modernization Strategy. Deputy Secretary of Defense
(DepSecDef).

DevSecOps Reference Architecture. 2023. Modern Software Practices. Chief Information
Officer (CIO) Library. https://dodcio.defense.gov/library/.

DoD CIO Library. 2023. "Modern Software Practices." Chief Information Officer (CIO) Library.
https://dodcio.defense.gov/library/.

DoD CIO. 2023. Software Modernization Implementation Plan. Restricted distribution, DoD
Chief Information Officer (CIO).

DoD Data Strategy. 2020. DoD Data Strategy. Washington, D.C.: Department of Defense
(DoD). https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DATA-
STRATEGY.PDF.

DoD DevSecOps Strategy. 2021. DoD Enterprise DevSecOps Strategy Guide. Washington,
D.C.: Department of Defense (DoD) Chief Information Officer and Under Secretary of
Defense for Acquisition and Sustainment.
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSec
Ops%20Strategy%20Guide_DoD-CIO_20211019.pdf.

DoD. 2022. "DoD Announces Release of JADC2 Implementation Plan." defense.gov. March 17.
Accessed October 23, 2023.
https://www.defense.gov/News/Releases/Release/Article/2970094/dod-announces-
release-of-jadc2-implementation-plan/.

EPA. 2023. "Learn about Data Standards." U.S. Environmental Protection Agency (EPA). June.
Accessed October 23, 2023. https://www.epa.gov/data-standards/learn-about-data-

References

API TECHNICAL GUIDANCE
47

standards#:~:text=What%20are%20data%20standards%3F,use%2C%20and%20manage
ment%20of%20data.

Hoehn, John R. 2022. Joint All-Domain Command and Control (JADC2). IF11493,
Congressional Research Service (CRS). https://us-east-1-02900067-
inspect.menlosecurity.com/safeview-
fileserv/tc_download/d4a9166ec39f3f84b1592e54ac08c10706a8025adf7cfa5d118462b33
95e2b74/?&cid=N17BBEED83A26_&rid=ed191390276891c293ed9aa049739f.

IBM API. 2023. "What Is an API?" IBM. Accessed October 23, 2023.
https://www.ibm.com/topics/api.

ISO 8601. 2019. ISO 8601: Date and Time Format. Geneva: International Organization for
Standardization (ISO). https://www.iso.org/iso-8601-date-and-time-format.html.

ISO/IEC 7498-1. 1994. ISO/IEC 7498-1:1994. Information Technology: Open Systems
Interconnection Basic Reference Model. Reviewed and confirmed in 2000, Geneva:
International Organization for Standardization (ISO).
https://www.iso.org/standard/20269.html.

Leung, Adrian, and Chris Mitchell. 2023. "Service Discovery Threat Model for Ad Hoc
Networks."
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a400c6ac8890e523d3
ee3cd17074ad9db0799085.

McKinsey & Company. 2023. "What Is Psychological Safety?" McKinsey & Company. July 17.
Accessed October 24, 2023. https://www.mckinsey.com/featured-insights/mckinsey-
explainers/what-is-psychological-safety.

NATO. 2023. A Data Centric Architecture for the Alliance. Working paper AC/322
(CP/1)WP(2023)0021 (INV), Consultation, Command and Control Board (C3B)
Communications and Information Services Capability Panel (CIS CAP), North Atlantic
Treaty Organization (NATO).

NIST SP 1800-21. 2020. "Mobile Device Security: Corporate Owned Personally-Enabled
(COPE)." NIST Computer Security Resource Center. Edited by Joshua, et al. Franklin.
September. Accessed October 1, 2023. https://csrc.nist.gov/pubs/sp/1800/21/final.

NIST SP 800-204. 2019. SP800-204 Security Strategies for Microservices-Based Application
Systems. National Institute of Standards and Technology (NIST).
https://csrc.nist.gov/pubs/sp/800/204/final.

NIST SP 800-207. 2020. Zero Trust Architecture. National Institute of Standards and
Technology (NIST). https://csrc.nist.gov/pubs/sp/800/207/final.

OAuth 2.0. 2023. OAuth 2.0. Accessed October 23, 2023. https://oauth.net/2/.
OUSD(A&S). 2019. DoD Digital Modernization Strategy: DoD Information Resource

Management Strategic Plan FY19-23. Washington, D.C.: Office of the Under Secretary
of Defense for Acquisition and Sustainment (OUSD(A&S)).
https://media.defense.gov/2019/Jul/12/2002156622/-1/-1/1/DOD-DIGITAL-
MODERNIZATION-STRATEGY-2019.PDF.

References

API TECHNICAL GUIDANCE
48

OUSD(A&S). 2022. Guidance for Programs to Create API Strategy. Washington, D.C.: Office
of the Under Secretary of Defense for Acquisition and Sustainment (OUSD(A&S)).
https://aaf.dau.edu/storage/2023/05/Program-API-Strategy-
Template_22May2023_v2.docx.

Sato, Daniel. 2014. "Canary Release." martinFowler.com. June 25. Accessed October 23, 2023.
https://martinfowler.com/bliki/CanaryRelease.html.

Sindall, Gemma. 2020. "An API Governance Model for Great APIs." digitalML. August 28.
Accessed October 23, 2023. https://www.digitalml.com/api-governance-model/.

—. 2023. "What Is API Governance? 9 Best Practices for API Governance Success." digitalML.
April 23. Accessed October 23, 2023. https://www.digitalml.com/api-governance-best-
practices/.

Application Programming Interface (API) Technical Guidance

Office of the Executive Director for Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering
3030 Defense Pentagon
Washington, DC 20301
osd-sea@mail.mil
https://www.cto.mil/sea

Distribution Statement A. Approved for public release. Distribution is unlimited.
DOPSR Case # 24-T-0172.

	Application Programming Interface (API) Technical Guidance
	Contents
	1 Introduction
	1.1 Purpose and Scope
	1.2 Intended Audience
	1.3 Document Relationships
	1.4 DoD Landscape
	1.4.1 API System Development Paradigm
	1.4.2 Interoperability
	1.4.3 Legacy Systems
	1.4.4 Other API Terms

	2 API Project Governance
	3 Cybersecurity
	3.1 Importance of APIs in Modern Warfare and Emerging Technologies
	3.2 API Cybersecurity Challenges
	3.3 Cybersecurity Best Practices
	3.3.1 Implement Robust Authentication and Authorization Mechanisms
	3.3.2 Ensure Input Validation and Output Encoding
	3.3.3 Encrypt and Protect Data in Classified Environment
	3.3.4 Monitor and Log for Early Threat Detection and Response
	3.3.5 Tailor API Gateway and Firewall Protection to DoD Requirements
	3.3.6 Ensure API Security Testing and Compliance in the DoD

	4 Design and Implementation Principles
	4.1 Common Data Model
	4.2 Open Standards and Protocols
	4.3 Design for Security Compliance
	4.4 Developmental Testing and Validation Processes
	4.5 Collaboration and Communication
	4.6 API Parameters for Pagination, Sorting, and Filtering
	4.7 API Metrics

	5 Conclusion
	Appendix A: API Project Governance Considerations
	Appendix B: Common API Vulnerabilities and Threats
	Appendix C: API Security Challenges
	Glossary
	Acronyms
	References

