Technical Report: SysML vl to SysML v2
Model Conversion Approach

March 2024

Version 1.2

Office of Systems Engineering and Architecture
Office of the Under Secretary of Defense for Research and Engineering

Washington, D.C.

Distribution Statement A: Approved for public release. Distribution is unlimited.
DOPSR Case # 24-T-1070.

Abstract

Abstract

Systems Modeling Language (SysML) Version 2 (v2) is the next generation of SysML, a standard
modeling language used in systems engineering throughout industry and government. The Object
Management Group (OMG), an international consortium, adopted SysML Version 1 (v1) in 2007
and 1s expected to adopt SysML v2 in 2024.

SysML v2 supports the evolving practice of model-based systems engineering (MBSE) to address
challenges in increasing system complexity and rapid technology change. SysML v2 is intended
to increase the effectiveness and adoption of MBSE by improving the language precision,
expressiveness, regularity, and interoperability.

This paper presents a suggested approach to make the transition from SysML v1 to SysML v2.
The approach was developed as part of a project sponsored by the Department of Defense (DoD)
Office of the Under Secretary of Defense for Research and Engineering, Systems Engineering and
Architecture (SE&A), Digital Engineering, Modeling and Simulation (DEM&S). To illustrate the
transition, the project team used a hypothetical system model, Skyzer Mission Model, developed
by the Systems Engineering Research Center, a DoD university-affiliated research center.

SE&A may revise this information as needed to reflect current practice. Readers may submit
comments to osd-sea@mail.mil | Attn: DEM&S SysML.

“Technical Report: SysML vl to SysML v2 Model Conversion Approach”

Office of Systems Engineering and Architecture

Office of the Under Secretary of Defense for Research and Engineering
3030 Defense Pentagon

Washington, DC 20301

https://www.cto.mil/sea/

osd-sea@mail.mil | Attn: DEM&S SysML

Distribution Statement A. Approved for public release. Distribution is unlimited.
DOPSR Case # 24-T-1070.

mailto:osd-sea@mail.mil
https://www.cto.mil/sea/
mailto:osd-sea@mail.mil

Contents

Contents
L 113 (0T L1 1o 1o) s WSS 6
LT NEW I SYSML V2 1ttt ettt ettt ettt e et ettt e e st ebeeneesseeseeneans 6
1.2 SysSML V1 to SYSML V2 TTanSitionccc.eeeevieeiieeeiieeeiieeeieeeeieeesveeesveeessseessneessaeessneens 7
2 SysML v to SysML v2 Model Conversion ProCess..........eevuieeiieeriiieeniieeeiee e evee e 8
B B o (T o {011 PSP 8
82N b ¥ 1 1 (05 o o PO RSP SRT 9
B T o o N o o (0 To7 T PSP 9
B 1 1 c) SRR 9
3 Other Considerations in the Model Conversion Processccocuveeviieeiieeeiiiesiieesieeeieeenne 10
3.1 WHRELher t0 CONVETL.....ciiiiiiiiiieeeiie ettt s e e et e e sbe e e saeeeaaaeessaeeensaeesnseeenanes 10
3.2 Incremental Model CONVETSION.cccuiieriieeiiieeitiieeieeeeieeeeieeestee e e e eeaeeeareeeaneesnreeennns 10
3.3 One-Way Transformationc.eeeeuieeiiieiiiie et e et e e e e e e e eeeeaeeereeeeens 10
3.4 Classified MOAEIS........ueiiuiiiiiieiciie ettt e e et e et e e e e e e etaeeenraeeeans 10
3.5 Configuration Managementcccueeerieeeiieeeiieeeiieeeieeesieeesteeesaeeessseeessseesseeessseeessnes 10
4 Example SySML VI to SYSML V2 CONVEISIONuveeiiuiieeiiieriieeeieeesieeesseeessseeessseesssneesseeenns 11
4.1 Transform SysML v1 Skyzer Model to SYSML V2coooiiiiiiiiiieeeeeeeeeeeee e 12
4.1.1 Transform Package StrUCTUIEcccviiiiiieeiiiecee ettt saee e e 13
4.1.2 Transform Blocks and their PartS...........cccooeoiiiiiiieiiiiieieceeee e 14
4.1.3 Transform Ports and CONNECIOTS.........eeeivieeiiieeiiieciieecieeestee e e eereeeeaeesaeeeseeeens 18
4.1.4 Transform Value Properties and Value TyPescccovvevivieriieeniieeiee e 20
4.1.5 Transform Requirements and their Hierarchy..........ccccoccvieviieeniieiniiecieeeeeeeee 22
4.1.6 Transform USE CasS......ccuerreueriririeeiiieeiieeeiieeeieeesteeesseeesssaeessseesssseessssessssseessseeenns 25
4.1.7 Transform ACHIVITIES......cccuiiiriieeeiiieeiteeeiteeerteeeiteesteeesteeessaaeessseeessseeesseessseesseeenns 26
4.1.8 Transform Interactions (e.g., sequence diagrams)ccceeeveeerveeerveeesveeeseeesireeenns 28
4.1.9 Transform State-Based Behaviorcccooeviiiiiiiiiiiiccecee e 30
4.1.10 Transform ParametriCscccuvieriuieiiiieeiiie et e cieeeeieeesieeesveeeseaeeeseaeessaeesseeesseeenns 30
4.1.11 Transform Requirements RelationShipsccccvveeciiiiiiiiinciie e 31
4.1.12 Transform Other EIEMENtSc.cooivuiiiiiiiiiiieciceceeecee et 32
4.1.13 Transform StEIEOLYPES ..ocvveervieieiieeiiieeitee ettt eeiteesteeesteeesteeessaeeensseessaeesseeesnseeenns 34
4.1.14 Transform CUStOMIZALIONSccueeruieeriieriieetienieeteeereetee e esteeseeeseesereeseesaeeenseennns 35
4.2 Post-Process the SysML v2 Skyzer Model...........ccooeviiiiiiiiiiiiiiieeiee e 36
4.2.1 Reorganize The SysML v2 Model Packagescccccoeveeeiiiiieniieiieeieeieeeeee 37
4.2.2 Refactor Parts HIETarchycccoeoiiiiiiiiiiiiieie et 39
4.2.3 Refactor Parts InterconnNeCtionccueeeuiieiiieniieiiienieeiieeie et 40
4.2.4 Capture Action Definitions in the ActionDefinitions Packagec..ccoceeveeriennennne. 41
4.2.5 Refactor Action HIeTarchyc.cccceeiiiiiiiiiiiiiiieiieeie et 41

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
3

Contents

4.2.6 Integrate BERaVIOTc.ccoiiiiiiiiiiiie ettt e e e e e aae e 43
4.2.7 Refactor the ReqUITEMENTScccueiiiiiiiiiieciee ettt e eaae e sree e 44
4.2.8 Refactor Requirements Traceability.........ccccoieriiieiiiiiieiiiecie e 45
4.2.9 Additional Refactoringcceeeuiiiiiiiiiiieeieece e saae e sree e 45
5 Observations and Recommendations..............ceiuiiiuieriiiiiiieiiieiie et 46
O SUIMIMATY .eeeniiiieeeeiieeee et ee e ettt e e e ettt ee e ettt e e e esetaeeeeassaeeeeaassaeeesansseeesanssaeaeeanssseesennsseeesenssseeesnnns 48
T REIETEIICES ...ttt ettt et e a e et e s at e e bt e s st e ebeesabeenbeesateebeenaaeens 49
Figures
Figure 1. Model Conversion PrOCESScccuieriiiiiieiieeiieriie ettt ite et et saeeiee e eseesnseenee e 8
Figure 2. SysML v1 Diagram Types Used in the Skyzer Mission Model..........c.ccccevveniriennnnne. 11
Figure 3. Skyzer Mission Model Package Structure in SysSML v1......ccccooiviiniininiiniiiiienee, 13
Figure 4. Skyzer Mission Model Package Structure in SySML v2......cccooiviiniininiieniiiccienene 14
Figure 5. Skyzer OV-1 10 SYSML V1oooiiiiiiiiiiiecee ettt 15
Figure 6. Skyzer Mission Domain Block Definition Diagram in SysML v1ccccoociiiniennee. 15
Figure 7. Skyzer OV-1 1 SYSML V2ccuiiiiiiiiiiieiiee ettt ettt st e 16
Figure 8. Skyzer Mission Domain Part Def Structure in SysSML v2ccccooiiniininieniiinienene 17
Figure 9. Skyzer Mission Domain Part Def Structure in SysSML v2ccccooiiiniininieniiicienene, 17
Figure 10. Skyzer System Black Box Interfaces in SySML VIccccooiiiiiiiiniininiinicciene 18
Figure 11. Skyzer System Black Box Interconnection in SysML V2cccoceviininieniineniienenn 19
Figure 12. Skyzer MoEs in SysML vl as Value Properties and Value Types with Units............ 20
Figure 13. Skyzer MoEs in SysML v2 as Attributes and Attribute Definitions with Units and
CONSTIAINES ...ttt ettt ettt et e et e et e s at e e bt e ebee et e e shbe e bt e ssbeanbeesabeenbeessbeenbeesaeeans 21
Figure 14. Skyzer Measures of Effectiveness (MOEs) in SysML v2 Textual Notation............... 21
Figure 15. Operational Requirements in SysML v1 Requirements Table...........cccccccvveveveennnen. 22
Figure 16. Operational Requirements in SysML v2 Textual Notation..........c.cccccveeevveercveennneens 23
Figure 17. Operational Requirements in SysML v2 Graphical Notation (partial) 24
Figure 18. Skyzer Mission Use Cases iN SYSML VI......coooiiiiiiiiiiiiiiiieeiie e 25
Figure 19. Skyzer Mission Use Cases iN SYSML V2......ccoviiiiiiiiiiiieciieeeee et 26
Figure 20. Activity Diagram for Non-Combatant Operations Scenario in SysML vI 27
Figure 21. Action Flow for Non-Combatant Operations Scenario in SysML v2 (partial) 28
Figure 22. Activate and Launch UAV Use Case Diagram Contains the Activate and Launch
Sequence Diagram in Figure 19b (partial)cocoieriiiiiieiiiiiieie et 29
Figure 23. Activate and Launch UAV Activity Diagram in SysML vl (partial)c.cce....... 29
Figure 24. Activate and Launch UAV Sequence Diagram in SysML vl (partial)....................... 29
Figure 25. Activate and Launch UAV Sequence in SysML v2 (partial)........ccccceevveeiiienieniennen. 30
Figure 26. Example of the Dependency Relationship Using the Textual Notation...................... 31
Figure 27. Requirements Satisfied by the Measures of Effectiveness in SysML v1.................... 31

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
4

file://usr.osd.mil/Home/OSD/OUSDATL/careydd/2024_DDC_Files/2024-03-13-!-SySML-Report-Salvatore-See-Email/SysML-v1-v2-Approach-Report-2024-03-14-Track.docx#_Toc161313585

Contents

Figure 28. Requirements that Are Allocated to the Measures of Effectiveness in SysML v2..... 32
Figure 29. Mission Data Model in SYSML V1cccooiiiiiiiiiieciieee e 33
Figure 30. Mission Data Model in SYSML V2ooiiiiiiiiiiiiece et 34
Figure 31. A SysML vl Example of an applied stereotype to Requirement Accoeeeuveeene 34
Figure 32. JCIDS Requirement Extension in SySML V2cccooiiiiiiiiiniieeciie e 35
Figure 33. Example Applies the jcids Key Word to the Requirement Called RequirementA with

an ID (e.g., short name) Of “1.17 ..ot 35
Figure 34. Package SIUCTUIEoouiiiiiiiiiieieeteree ettt e 37
Figure 35. Part Definitions Packagecooerieriiiiiiiiniiiiceceeceeee e 38
Figure 36. Skyzer Mission Domain Parts TTee..........cocevieiiiriiniiiiniiniceiecenceese e 39
Figure 37. Skyzer Enterprise Parts TTeecc.eoveviiriiiiiiieiiiiesieeeeeeee e 40
Figure 38. Skyzer System Parts TIEe.......ccccevuerieriiiiiiienieieeereee et 40
FIgure 39. CONNECLIONScoviiuiiiiiiieieiiiesteete ettt sttt ettt ettt sb ettt sbe et st e bt eaeeanesaeenee 40
Figure 40. Action ‘NCO 1: Prepare/Configure’ccceeeuieriieiiienieeieeeie et esiee e sve e 42
Figure 41. Perform ACHOMNcc.ovuiiiiiieiieeeect ettt sttt s 42
Figure 43. Mission Requirements Hierarchy (Refactored)..........cccovvvevieiiiiiniininiiniiiiene 44
Figure 44. Formalizing the Operational Radius Requirement with Constraints............c..ccceeueene. 45

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
5

1. Introduction

1 Introduction

Systems Modeling Language (SysML) Version 2 (v2) is the next generation of SysML, a standard
modeling language used in systems engineering throughout industry and government. The Object
Management Group (OMG), an international consortium, adopted SysML vl in 2007 and is
expected to adopt SysML v2 in 2024. SysML v2 supports the evolving practice of model-based
systems engineering (MBSE) to address challenges in increasing system complexity and rapid
technology change. SysML v2 is intended to increase the effectiveness and adoption of MBSE by
improving the language precision, expressiveness, regularity, and interoperability.

The Department of Defense (DoD) uses SysML in system development, and some acquisition
programs will need to convert their models from to SysML v1 to SysML v2 while other acquisition
program will continue to model in SysML v1. The DoD Office of the Under Secretary of Defense
for Research and Engineering (OUSD(R&E)) Systems Engineering and Architecture (SE&A),
Digital Engineering, Modeling and Simulation (DEM&S), sponsored a project to develop
recommendation for an organization to use to make change programs from SysML v1 to SysML
v2. The information is broad in addressing modeling practices, tools, and training but also includes
details on how to convert a model from SysML vl to v2. This report is intended for DoD
organizations and programs that are using or planning to use MBSE practices with SysML. This
information is offered for reference and is not intended as official DoD policy.

1.1 New in SysML v2

SysML v2 incorporates a new metamodel designed to address system modeling needs while further
leveraging the capabilities of the Unified Modeling Language (UML) metamodel upon which
SysML v1 is based. SysML v2 includes a textual notation in addition to a graphical notation to
increase the language precision. It includes a standard application programming interface (API)'
to enable interoperability between the system model in SysML v2 and other models and tools that
are part of the digital engineering ecosystem.

SysML v2 offers the potential to increase quality by allowing greater visibility into a system
beginning early in development and greater precision in design throughout the life cycle. It
promotes productivity, agility, and reduced cycle-time by increasing the opportunity for reuse and
enhancing interoperability with other engineering disciplines and processes during development.

! An application programming interface (API) is “a set of protocols, routines, and tools for building software
applications. APIs define how different software components should interact with each other, allowing developers to
create applications that can leverage the functionality of other software systems” (SE&A Software Engineering,
https://www.cto.mil/sea/swe).

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
6

https://www.cto.mil/sea/swe

1. Introduction

1.2 SysML v1 to SysML v2 Transition

The OMG approved the SysML v2 beta specifications in June 20232, The specifications are now
in their finalization phase, during which time tool vendors are asked to provide feedback regarding
the specification. The specification is expected to be submitted for final adoption in 2024.
Commercial tools are anticipated to become available beginning shortly after final adoption.

Organizations should develop a transition strategy and plan to fully benefit from SysML v2. They
should form a transition team responsible for developing and implementing the strategy and plan
as part of their existing improvement efforts such as those for digital engineering and MBSE. The
strategy and plan should focus on establishing modeling practices, tools, and training and should
include pilot projects to assess the impact of proposed updates. The transition team should assess
when programs should make the transition and consider potential near, intermediate, and long-
term benefits versus the costs and risks of transition. The transition approach should include
support for both SysML v1 and v2 models to coexist for some years to come.

The organization should provide the needed support to assist programs in their transition planning
and tool acquisition. This includes training team members in the language, methods, and tools, and
providing programs with the information and tools established during their pilot phase, including
reference models, patterns, and reuse libraries. The organization should continue to provide
ongoing subject matter expertise to guide the program through the transition.

Transition planning to SysML v2 should begin before the start of a new program or before a major
system upgrade. A smooth transition requires considerable preparation to ensure the program’s
systems engineering team is properly trained in SysML v2 and has access to the appropriate tools
and resources. The project team also developed a Transition Plan Template® to assist organizations
in planning.

2 See Object Management Group (OMG) website, https://www.omg.org/spec/SysMIL/2.0/Betal.

3 SysML v1 to SysML v2 Transition Community, SysML v1 to SysML v2 Transition Plan Template
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml vl to sysml v2 transition_guida
nce

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
7

https://www.omg.org/spec/SysML/2.0/Beta1
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml_v1_to_sysml_v2_transition_guidance
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml_v1_to_sysml_v2_transition_guidance

2. SysML v1 to SysML v2 Model Conversion Process

2 SysML vl to SysML v2 Model Conversion Process

Figure 1 shows the steps in the conversion process from a SysML v1 model to a SysML v2 model
which includes: (1) pre-process the SysML vl model to prepare it for the transformation, (2)
transform the SysML v1 model to a SysML v2 model, (3) post-process the SysML v2 model to
better leverage the SysML v2 capabilities, and (4) validate that the SysML v2 model accurately
reflects the intent of the SysML v1 model.

Step 2
Step 1 Transform the Step 3 Step 4
Pre-process the SysML v1 model Post-process the Validate the
SysML v1 model to a SysML v2 SysML v2 model model
model

Figure 1. Model Conversion Process

In addition, further steps may be required to assess the impact of the SysML v2 model on existing
artifacts that were derived from the SysML v1 model. The derived artifacts may need to be updated
for the SysML v2 effort, but this is considered outside of the scope of the SysML v1 to SysML v2
model conversion. Each of these steps is summarized below.

2.1 Pre-Process

This step involves pre-processing the SysML v1 model to prepare the model for transformation.
The required pre-processing will depend on the transformation capability that the modeling tool
provides, so it is important to understand the tool capability and limitations. Performing the
standard SysML v1 to SysML v2 model transformation requires that the SysML v1 model conform
to the SysML v1 specification, so the pre-processing should ensure that SysML v1 model conforms
to its specification. Any tool-specific extensions along with other tool customizations to the model
may need to be removed. However, the use of stereotypes and profiles are expected to be supported
by the transformation.

Certain features of SysML v1, such as adjunct properties, are not incorporated in SysML v2. Part
of the pre-processing could be to remove these elements or assess the impact of the transformation
on these features and note that they may need to be addressed in the post-processing step.

Circular dependencies should be identified to determine if and how they may impact the
transformation and addressed accordingly. The SysML v1 model may also need to be reorganized
to enable an incremental conversion process.

Creating a well-formed SysML vl model that conforms to good practice will facilitate the
conversion process. Model validation errors should be resolved to ensure the model is well-formed.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
8

2. SysML v1 to SysML v2 Model Conversion Process

Standard modeling conventions should be applied such as consistent naming conventions and
ambiguities and redundancies in the model should be minimized.

2.2 Transform

This step involves transforming the pre-processed SysML vl model to a SysML v2 model. A
SysML v1 model can be transformed to a SysML v2 model using a tool that can execute the
standard SysML vl to SysML v2 transformation specification. The standard transformation
requires that the SysML v1 model be conformant to the SysML v1 specification to be transformed
to a conformant SysML v2 model.

The SysML vl to v2 transformation specification defines the rules for transforming each kind of
element in SysML v1 to a corresponding element in SysML v2. The transformation also includes
rules for cases where there is no corresponding SysML v2 element. For example, a block in SysML
vl includes a meta property called 'isEncapsulated'. There is no equivalent concept in SysML v2
since the SysML v2 language designers did not see a need for this. However, there is a rule for
how to address this in the transformation.

The tool should generate validation errors and warnings to indicate what aspects of the
transformation were not successful. In addition, a manual inspection should be performed to
compare the SysML v2 model with the SysML v1 model.

2.3 Post-Process

This step involves post-processing the SysML v2 model to leverage the SysML v2 capabilities.
The transformed SysML v2 model may need to be reorganized and refactored to fully leverage the
SysML v2 capabilities. The reorganizing and refactoring should apply the usage-focused modeling
paradigm which is briefly discussed in the section entitled “Post-process the SysML v2 Skyzer
model.”

2.4 Validate

It is imperative to validate that the SysML v2 model accurately reflects the intent of the SysML
v1 model. This can be done by comparing the two models. This may include reproducing selected
views of the SysML v2 model such as a system hierarchy and carefully comparing it with the
system hierarchy in the SysML v1 model. It is anticipated that tool vendors may be able to generate
automated comparison reports to assist in the inspection. Comparing execution and analysis results
from the SysML v2 model with the corresponding execution and analysis results from the SysML
vl model may also assist in the validation. (Note: SysML v2 execution semantics are still being
specified as of the date of this writing).

A tool is expected to support the SysML v2 standard views which can render similar information
that is contained in the nine standard SysML v1 diagrams. However, the layout information is not
preserved and may need to be adjusted manually to align with the original SysML v1 diagram.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
9

3. Other Considerations in the Model Conversion Process

3 Other Considerations in the Model Conversion Process

3.1 Whether to Convert

Before making the conversion, a project may want to evaluate the cost of converting a SysML vl
model to a SysML v2 model versus the cost of developing a new SysML v2 model from scratch.
It may be more cost-effective to start from scratch if the SysML v1 model was not maintained, or
if its scope of the SysML v1 model is not consistent with the current effort.

3.2 Incremental Model Conversion

Projects should perform the conversion process incrementally rather than as a one-time process.
As part of the pre-processing, the SysML vl model can be partitioned to reduce the coupling
between the parts of the model that will be incrementally transformed. For example, the model can
be partitioned into packages that contain the structure, behavior, and requirements and further
partitioned into mission, system, and subsystem levels. The incremental conversion process may
first transform the structure, then transform the behavior, and then transform the requirements.

3.3 One-Way Transformation

The transformation occurs in a one-way direction from SysML vl to SysML v2. There is no
standard to transform a SysML v2 model to a SysML vl model because many of the capabilities
in SysML v2 are not supported in SysML vl. For example, SysML vl supports a block
decomposition but does not support a SysML v2 part decomposition.

3.4 Classified Models

The transformation of a classified SysML v1 model should preserve all classification markings in
the SysML v2 model. A standard security extension should be applied that leverages the metadata
capability in SysML v2. A project should define a process to ensure all markings are properly
applied and includes manual inspection of the model. The same classification procedures that
apply to the SysML v1 model should apply to the SysML v2 model.

3.5 Configuration Management

Projects can apply the SysML v2 API configuration management services to the SysML v2 models
beginning with the initial transformation. Typical branch and merge concepts can be used to
manage updates to the model. The configuration management of the SysML v2 model should be
incorporated into the broader life cycle management environment using workflow or issue
management applications such as Jira.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
10

4. Example SysML v1 to SysML v2 Conversion

4 Example SysML v1 to SysML v2 Conversion

To investigate the conversion of an existing SysML v1 model to SysML v2, DEM&S used the
Skyzer Mission Model, a fictional unmanned aerial vehicle (UAV) model developed by the
Systems Engineering Research Center (SERC) under contract with the Naval Air (NAVAIR)
Systems Command. SERC developed a series of models to represent the mission and system
design and to demonstrate the application of typical modeling practices and methods. *

The Skyzer Mission Model portrays a UAV launched from a ship to perform a search and rescue
mission. The mission model consists of approximately 5,300 model elements. It includes 6 of the
9 standard SysML v1 diagrams, and requirements tables, but it does not include any state machine,
parametric, or requirements diagrams as shown in Figure 2.

SysML
Diagrams
|
| | |
Behavior 5 Requirements Structure
Diagram Diagram Diagram
|
| | |
1 Activity 2 ?I?(fk 7 Internal Block 9 Package
Diagram B Diagram Diagram
g Diagram i i
| | 2Sequence L 8 Parametric
Diagram Diagram
3 St:te SysMLv1 model
— Machine
G element types
Included I:I
| | 4UseCase Not Included |
Diagram

Figure 2. SysML v1 Diagram Types Used in the Skyzer Mission Model

The model includes many kinds of SysML v1 model elements including packages, dependencies,
blocks, attributes, parts, connections, associations, use cases, actors, activities, actions, swim lanes,
control flows, object flows, lifelines, messages, requirements, constraints, and trace and satisfy
relationships. The model also includes some stereotypes to create language extensions and some
customizations that are unique to the tool such as a glossary, acronym list, a legend, and some
custom images. Some of the more common elements that are not included in this model are proxy

4 The original SysML v1 Skyzer Mission Model is available publicly at the following link. To open and view the file,
enter User: openmbeeguest and Password: guest. The tool used to create this model was MagicDraw version 19.0 sp4.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
11

https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa7-49be-9f44-e7361699211d/master/documents/_18_5_2_8db028d_1512132621231_771993_109678/views/_18_5_2_8db028d_1512132621231_771993_109678

4. Example SysML v1 to SysML v2 Conversion

and full ports, interface blocks, states, transitions, test cases, derive and verify relationships,
constraint blocks, constraint properties, binding connections, views, and viewpoints.

The SysML v2 modeling environment is the pilot implementation that was developed as part of
the SysML v2 Submission Team (SST) to validate the SysML v2 language (Seidewitz & Bajaj).
This implementation is integrated into the Jupyter Lab environment to provide support for creating
SysML v2 models using the textual notation. The graphical visualization environment is adapted
from the open-source PlantUML application that also was integrated into the Jupyter environment.
The modified PlantUML visualization capability is limited and is not entirely conformant to the
SysML v2 specifications. It is anticipated that the visualization capability will be substantially
improved when commercial tools become available.

The SysML v2 model was created using the Jupyter environment and is available in two formats
using the Jupyter extension. jpynb, and a SysML extension that can be opened in most text editors.
The link to a publicly available site can be used to experiment with the SysML v2 textual notation.

Since the objective for converting this example was to illustrate the model conversion approach,
only representative parts of the model were converted and not the entire model. The conversion
process was performed manually since automation was not available for this effort. The focus for
this example was on the transformation and post-processing steps. The manual transformation
precluded the need to pre-process the model. The transformation and post-processing steps are
described below.

4.1 Transform SysML vl Skyzer Model to SysML v2

An implementation of the transformation specification is not currently available. The
transformation was performed by manually creating SysML v2 elements in the Jupyter
environment that corresponded to elements in the SysML v1 model. Significant portions of the
SysML v1 model were transformed to demonstrate the approach.

The mapping from SysML vl elements to SysML v2 elements was based on the modelers
experience with SysML v2 rather than following the strict rules defined in the SysML v1 to SysML
v2 transformation specification. Much of the mapping is straightforward, such as a block in SysML
vl is transformed to a part def in SysML v2 and a requirement in SysML vl is transformed to a
requirement def in SysML v2. There will be differences between the results of the manual
transformation and the results of an automated transformation. However, the manual
transformation should be a reasonable approximation of the expected results from an automated
transformation after pre-processing.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
12

https://sysmlv2lab.com/

4. Example SysML v1 to SysML v2 Conversion

The steps to transform a SysML v1 model to a SysML v2 model are performed incrementally as
follows:

e Transform Package Structure

e Transform Blocks and their Parts

e Transform Ports and Connectors

e Transform Value Properties and Value Types

e Transform Requirements and their Hierarchy

e Transform Use Cases

e Transform Activities

e Transform Interactions (e.g., sequence diagrams)

e Transform State-Based Behavior

e Transform Parametrics

e Transform Requirements Relationships

e Transform Other Elements

e Transform Stereotypes

e Transform Customizations
4.1.1 Transform Package Structure

The first step in the transformation process was to transform the SysML v1 Skyzer Mission Model
package structure shown in the package diagram in Figure 3.

pkg [Skyzer Mission Model])
l

Skyzer Mission Model
0. Mission Statement
1. Mission Requirements
2. Mission Structure
3. Miszion Use Cases
4. Mission Behavior
5. Mission Parametric
6. Mission Interface Definitions
i. Skyzer UAV
9. Supporn Elements
10. Lessons Learn
Skyzer Mission Model
J Start

ETDDECFDDDDDD

Figure 3. Skyzer Mission Model Package Structure in SysML v1

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
13

4. Example SysML v1 to SysML v2 Conversion

The corresponding SysML v2 package structure is shown below in Figure 4. The package names
must be included in quotes because the name begins with a number. The import statements are
included to make the contents of selected packages visible to the rest of the model.

package SkyzerMissionModel transformed{
import '@.MissionStatement’'::¥;
import 'l.MissionReguirements'::¥#;
import '2.MissionStructure'::¥;
import '3.MissionUseCases’'::#%;
import '11.lLanguageCustomization'::%*;
package '@.MissionStatement’{e}
package 'l.MissionRequirements'{«s}
package '2.MissionStructure’{«s}
package '3.MissionUseCases’'{«}
package '4.MissionBehavior'{«}
package '5.MissionParametric'{es}
package '6.MissionInterfaceDefinitions'{«}
package '7.SkyzerUAV'{<}
package '9.SupportElements’ {«}
package '18.lessonslearned’'{«}
package '1l1.languageCustomization’{e}
}

Figure 4. Skyzer Mission Model Package Structure in SysML v2
4.1.2 Transform Blocks and their Parts

The next step in the transformation was to transform the blocks and their parts that are generally
depicted on a block definition diagram. The blocks in the SysML v1 model are distributed across
many packages including the Mission Structure, Mission Use Cases, Mission Parametric, Skyzer
UAYV, and Support Elements.

Figures 5 and 6 show some of the blocks and their structure in the OV-1 and the Skyzer Mission
Domain model respectively. The blocks in the OV-1 are the same blocks that are shown in the
Mission Domain Model. In the OV-1, the blocks are related through dependencies (dashed lines
with arrowheads). The symbols on the dependency relationships are defined in the legend as
graphical adornments that have no relationship to other model elements. The legend is an example
of a tool customization.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
14

4. Example SysML v1 to SysML v2 Conversion

Figure 5. Skyzer OV-1 in SysML vl

bdd [Package] 2. Mission Structure [Mission Domain Diagrams -V1]_’J

l

wblocks
Weather

ablocks
Target

pars
- Distress SailBoat
: Floater

wblocks
Lost

—

ablocks
Skyzer Mission Domain

ablocks
ablocks oy
«Performers s
Navy wblocks «Performers
«Performers T P -
I T S ‘Operational Environment parts e rirsd
arts S INMARSAT
B - Air vehice e
Ravy Ship : Control Station «blocks
parts : Recovery System wPerformers

: Rescue Coordinator
: Mission Commander

wblocks
Area of Instrest

wblocks
«Performers
Littoral Combat Ship

: Payload

Maintenance Team

!

]

wblocke wblocks
«Performers «Performers
Ground Crew DDG Class Ship
paris
Ship Utilities

eblocks

=

«blocks
«Performers «Performers wblocks
Skyzer Team Training team «Performers
Support Team

«blocks
Faclities

Figure 6. Skyzer Mission Domain Block Definition Diagram in SysML v1

Technical Paper: SysML vl to SysML v2 Model Conversion Approach

15

4. Example SysML v1 to SysML v2 Conversion

Figure 7 shows the OV-1 in SysML v2 corresponding to the OV-1 in SysML v1. The blocks in
SysML v1 map to part definitions in SysML v2 and the dependencies in SysML vl map to
dependencies in SysML v2. The legend in the SysML vl model is a custom feature that has no
standard mapping to SysML v2 and would require a custom mapping.

oVv_1_
| dPi ti «metadata» AN
egendProperties e «part def»
- SkyzerTeam
smalllmage = image1
7
/
/
, 7 «depend»
/
¥
«part def» «part def» «part def» «part def»
Weather Satellite ControlStation RecoverySystem
v T X 7
7 \ /
\\ l\ L7 \ /
\ «depend» \«depend» , “«depend» \ «depend» , «depend»
N \ , ’ A \ /
.l ¥ » EY ¥y
= ~ al «#lcon» «part def»
AirVehicle NavyShip
- ! TN
- \ AN
s \ ~
e «depend» \«depend» ~ \«depend»
s \ N N
» | A
«part def» «part def» «part def»
AreaOfinterest LocalFirstResponders LostCivilian

Figure 7. Skyzer OV-1 in SysML v2

Figure 8 shows the SysML v2 structure that corresponds to the SysML v1 Skyzer Mission Model
block structure in Figure 6. A portion of the SysML v2 diagram is expanded in Figure 9. The
blocks in SysML vl are transformed to part definitions in SysML v2 and the part properties in
SysML v1 are transformed to parts in SysML v2. The composite associations in SysML vl are
mapped to feature memberships in SysML v2 with a black diamond on the owning end of the
relationship. The line with the arrowhead and the two dots is a “defined by” relationship between
a part and a part definition.

The SysML v2 structure corresponds to the same structure as shown in SysML v1. The structure
shows that a part definition is composed of parts that are defined by part definitions that are
composed of other parts. This pattern applies recursively down the system hierarchy. The post-
processed model can simplify this structure considerably using the usage focused modeling
paradigm to represent the structure as a part hierarchy without having to traverse from part def to
part to part def to part.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
16

4. Example SysML v1

to SysML v2 Conversion

Figure 8. Skyzer Mission Domain Part Def Structure in SysML v2

58T
target: Target

T

Target
-l _'_‘_fﬁ" ' \

1 \“"-u.‘|
T

pats

20BTs
dstrassSmlBoat: DisiressSailBoat floater: Floater

—3

wnms gad,
SkymwMissorDomain

=

; - -
,——'—'_rﬂf_,_,——'r;
_— ——
-____.- _'_'_,_ﬂ 1
T

et
amaronment: Enviranment

apar et
Enviranmeni

BB

aplrts
weathar: Weather

;

wparget
WWanther

5Ot
cperatioralEnvironment: OperatioralEnvircnmant

1

Lt
mamtanance Team: Maintenance Taam

;

Naintenance Team

_""‘-.____‘__ i —
]
dot D00 |
\h \'

gt
OperationalEnvironment

(- -]
o —
o s ‘\
|

wpart
skymmrTeam SkymrTeam

.‘g

woart gete
Skyrer Team

Figure 9. Skyzer Mission Domain Part Def Structure in SysML v2

Technical Paper: SysML vl to SysML v2 Model Conversion Approach

17

4. Example SysML v1 to SysML v2 Conversion

4.1.3 Transform Ports and Connectors

The next step was to transform SysML vl interconnections that are depicted on internal block
diagrams.

The Skyzer System black box interfaces in the SysML vl model are shown in Figure 10 on an
internal block diagram. The SysML vl model did not include the use of ports on parts. The
information items that flow across the connectors are contained in the Mission Interface
Definitions package.

ibd [Block] 1. Black Box Specifications [1. Black Box Specifications]J

UAW navigation data, . .
IR Reading Data, : Skyzer System Network Links,

: =+ Communication Data
treaming Video Data UAW Command Controls - - !
. GPS Position Data GPS Location Reque:
- ATE IS < L < > : Satellite
: Maintenance Team 4 3 : DOD
Maintenance Target Location Data,

Commutation Hub

: Training team - - : Area of Instrest
Training Missions Geo Tagging,
EO/R

Streaming Vid EIU Capture

Commanders Intent,

: Navy Ship Landing HéUk'f Iean uav Cummag—fl Controls > [": Local First Responders |
Commutation Hub, |

Target Location Data

I : Lost Civilain
EQ/R |

Location Tracking,
Streaming Video Capture

o Weath
F :
Hurricanes Force Wind,

Severe Weather

Figure 10. Skyzer System Black Box Interfaces in SysML v1

A SysML vl connector transforms to a SysML v2 connection. A SysML vl proxy port and
interface block transform to a SysML v2 port and port definition, respectively. The items that flow
across the connectors are mapped to item definitions.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
18

4. Example SysML v1 to SysML v2 Conversion

The corresponding SysML v2 interconnection diagram between the Skyzer System and the
external elements is shown in Figure 11; however, the items that flow are not displayed due to
limitations of the current pilot implementation visualization. The items that flow are represented
as item definitions and can be seen in the SysML v2 textual model fragment below. This fragment
shows the items that flow between the skyzerTeam and the skyzerSystem, which are represented as
messages contained by the connection.

connect skyzerSystem to skyzerTeami
message of "UAV Command Controls' from skyzerTeam to skyzerSystem;
message of "UAV navigation data’ from skyzerSystem to skyzerTeam;
message of "IR Reading Data' from skyzerSystem to skyzerTeam;
message of 'Streaming Video Data’ from skyzerSystem to skyzerTeam;

[Bmckdiarfpectications

« parf defs
1. BlackBosSpecilicatons

rn'nmttn.‘mmTEnm Maintenance Team]

I:hc.'an irstRespondons: LocalFirstRespondons]

[;re.aofhbemﬂ. AresaOfinterest _]

[ﬁlu_,rmiﬂymznl: Skyer Syslem

wid ther: YWeather

ET:IMQTEEM Training Tearmn]

1 patedite: Satelite

{skfaerTeam. Skyzer Team]

Items that flow are not displayed.

Figure 11. Skyzer System Black Box Interconnection in SysML v2

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
19

4. Example SysML v1 to SysML v2 Conversion

4.1.4 Transform Value Properties and Value Types

Figure 12 shows the Skyzer measures of effectiveness as value properties with the moe stereotype
applied. Each value property is typed by a value type that is intended to include a quantity kind
and unit such as knots. The value properties are constrained as shown in the constraints
compartment.

wblocks
Mission MoEs

{cruize speed == 170}
{recovery condition == 0.3}

{max payload weight == 200}
{operational radius == 200}
{operational endurance == 4}
{launch & recover sea state == 5}

cruize speed : knots

max payload weight : lbs
operational radius . nm

operational endurance : h

launch & recover sea state : Intege
ex recovery condition . Real

A MOED

sl als Ml

o

wblocks
Skyzer Mission Domain

Constraints are imposed on the value properties.

Figure 12. Skyzer MoEs in SysML v1 as Value Properties and Value Types with Units.

The corresponding SysML v2 measures of effectiveness and constraints are shown in Figure 13.
The SysML vl value properties and value types transform to SysML v2 attributes and attribute
definitions, and SysML vl constraints transform to SysML v2 constraints. The SysML v1 moe
stereotype is transformed to a standard extension that is defined in the SysML v2 model library
called the ParametersOfinterestMetadata library. The moe key word is not displayed in Figure
13 due to limitations of the visualization, but can be seen in the textual notation below in Figure
14 designated as #moe:

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
20

4. Example SysML v1 to SysML v2 Conversion

5.MissionParametric \

«part def»
MissionMOEs

attributes
cruise speed: knots
launch & recover sea state: Integer
max payload weight: Ibs
operational endurance: h
operational radius: nm
recovery condition: Real

constraints
{'cruise speed' >= 170}
{'launch & recover sea state' >= 5}
{'max payload weight' >= 200}
{'operational endurance' >= 4}
{'operational radius' >= 200}
{'recovery condition' >= 0.3}

parts

skyzerMissionDomain:
SkyzerMissionDomain

Figure 13. Skyzer MoEs in SysML v2 as Attributes and Attribute Definitions with Units and Constraints

package 'S5.MissionParametric’{

import '9.SupportElements’::ValueTypes::#;

import ParametersOfInterestMetadata::#%;

part def MissionMOEs{
#moe attribute 'cruise speed’:knots;
#moe attribute 'max payload weight':lbs;
#moe attribute 'operational radius':nm;
#moe attribute 'operational endurance’:h;
#moe attribute 'launch & recover sea state':Integer;
#moe attribute 'recovery condition':Real;
constraint {'cruise speed' »= 178}
constraint {'launch & recover sea state' »= 5}
constraint {'max payload weight' »>= 288}
constraint {'operational endurance' »= 4}
constraint {'operational radius' »>= 288}
constraint {'recovery condition' »>= ©.3}
part skyzerMissionDomain:SkyzerMissionDomain;

¥

Figure 14. Skyzer Measures of Effectiveness (MOEs) in SysML v2 Textual Notation

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
21

4. Example SysML v1 to SysML v2 Conversion

4.1.5 Transform Requirements and their Hierarchy

The next step in the transformation was to transform the requirements and their containment
hierarchy. In SysML vl1, requirements are generally depicted using requirements diagrams and
requirements tables. The requirements in the Skyzer Mission Model were contained in the Mission
Requirements package and depicted using requirements tables. The SysML v1 requirements table
for the Operational Requirements is shown in Figure 15.

* Al | Name | Text
1 |1.1.1 B &l 1.1.1 UAV Capability The systemn shall provide UAV capability that will support search and rescue missions
The system shall fly a predetermined pattern in order to conduct search and rescue
< [R 1.1.1.1 UAV Fly Patterns reconnaissance with either IR sensors or full motion video
. !) The system shall conduct @ maximum of 5 hours of operations for search and rescue
3 1112 (& 1.1.1.2 UAV Operation Period | oo oo-C b sehiidig
__) The system shall be able to follow a flight path even if it loses connection with ship’s
4 [1.1.1.3 [R] 1.1.1.3 UAV Autonomous Flying e S
|The system shall provide UAV to have autonomous shipboard launch and Recover with little
5 1.1.1.4 Bl [’l 1.1.1.4 UAV Autonomous Launch %or no human interfacing
6 1.1.1.44 [’] 1.1.1.4.1 UAV Launch and Land The system shall able to launch and land off of a Arleigh Burke Class Destroyers
- The system shall to be able to Launch and Recover in sea states five without causing
7 1.1.1.4.2 [R] 1.1.1.4.2 UAV Launch and Recd damage to the UAV, ship or crew.
8 |1.1.1.5 [R] 1.1.1.5 UAV Hover Capabilities | The system shall maintain position, hover over an area of interest
. - | The system shall transmission bandwidth for communication with the ground control
S [hiAs [&l 1.1.1.6 UAV Transmission Bandui station will be able to transmit full motion video
10 1.1.2 B [&l 1.1.2 Imaging Capability The system shall perform various imaging capabilities for search and rescue
-) Ground Control to have image-processing capabilities to support identifying locations, lost
el [&l 1.1.2.1 Image Processing personnel, and drop locations for search and rescue
. _ Ground Control to have image-exploitation capabilities to support imagery mapping and
12 [1.1.2.2 (Rl 1.1.2.2 Image-Exploitation S
13 1.1.3 E [Rl 1.1.3 Surveillance Capability The system shall provide a surveillance capabilities to support search and rescue missions
. The system shall use UAV to locate people during search and rescue missions with use of
14 1.1.3.1 (Rl 1.1.3.1 Human Search and Rs_-sc:u:payloadSr Gilliriotion vidad
e . The system shall provide Ground Control to perform various communication capabilities
3 il B [& 114 Communications Capability that will support search and rescue efforts during search and rescue missions
16 [1.1.4.1 [R] 1.1.4.1 Multiple UAV Ground Contf DELETED ... Out of Scope

Figure 15. Operational Requirements in SysML vl Requirements Table

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
22

4. Example SysML v1 to SysML v2 Conversion

A SysML vl requirement maps to a SysML v2 requirement definition. The mapping rules in the
transformation specification include additional constraints on the usages of the requirement
definition. The SysML v2 requirement definitions in Figure 16 correspond to the SysML vl
Operational Requirements in Figure 15. A subset of the requirements includes the shall statements
using the doc key word.

package '1.1.0perationalRequirements’{
requirement def CommunicationsCapability{
requirement def Multiple UAV GroundControlStation_Deleted;
i
requirement def ImagingCapability{
doc /* The system shall perform various imaging capabilities for search and rescue®/
requirement def ImageProcessing{
doc /* Ground Control to have image-processing capabilities to support identifying
Locations, Lost personnel, and drop locations for search and rescue */
¥
requirement def ImageExploitation{
doc /* Ground Control to have image-exploitation capabilities to support imagery
mapping and seeking capabilities *A
¥
h
requirement def SurveillanceCapabilityq{
requirement def HumanSearchAndRescueWithUAV{
doc /* The system shall use UAV to lLocate people during search and rescue missions
with use of payloads, full motion video */
}

h
requirement def UAV Capability{

requirement def UAV_ AutonomousFlying;

requirement def UAV AutonomouslaunchAndRecover(
requirement def UAV LaunchAndlLandinghreas;
requirement def UAV LaunchAndRecoverInHighSeaStates;

¥

requirement def UAV FlyPaterns;

requirement def UAV _HoverCapabilities;

requirement def UAV OperationPeriod;

requirement def UAV_TransmissionBandwidth;

Figure 16. Operational Requirements in SysML v2 Textual Notation

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
23

4. Example SysML v1 to SysML v2 Conversion

SysML vl uses containment to represent a requirement hierarchy, which is depicted graphically
as a line with a crosshair symbol. Although the containment is depicted graphically, it is not an
actual (i.e., reified) relationship in the SysML v1 model. The SysML v1 containment maps to a
membership relationship in SysML v2 which is a reified relationship that is explicitly represented
in the SysML v2 model. This SysML v2 membership relationship is depicted graphically using
the same line and crosshair symbol as SysML v1 containment. A SysML v2 graphical view of
some of the Operational Requirements is shown in Figure 17.

1.1.0OperationalRequirements_ \

«requirement def»
ImagingCapability
doc
The system shall perform various imaging
capabilities for search and rescue

SN

«requirement def»
ImageExploitation

doc
Ground Control to have image-exploitation
capabilities to support imagery
mapping and seeking capabilities

«requirement def»
ImageProcessing
doc
Ground Control to have image-processing
capabilities to support identifying
locations, lost personnel, and drop
locations for search and rescue

Figure 17. Operational Requirements in SysML v2 Graphical Notation (partial)

The requirement id is included in the SysML v1 model but not included in the transformation.
SysML v2 provides a mechanism for any element to contain an id using a short name that is
contained in brackets. For example, the SysML v1 requirement called Imaging Capability has an
id 1.1.1. This requirement can be transformed to the SysML v2 requirement definition in Figure
17 as <1.1.1> Imaging Capability.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
24

4. Example SysML v1 to SysML v2 Conversion

4.1.6 Transform Use Cases

The next step in the transformation was to transform the use cases, which are generally shown in
SysML vl use case diagrams. The use cases in the Skyzer Mission Model are contained in the
Mission Use Cases package. The Skyzer Mission Use Cases are shown in Figure 18. Some use
cases are specializations of other use cases. The use cases are stereotyped extensions of the
standard SysML vl use case. Each use case contains a Use Case Number and several other
stereotype properties that are not shown in the diagram. The Skyzer System is expressed as a block
and the external systems are expressed as actors with the stereotype stakeholder and Performer. A
stakeholder concern is a comment that is related to the stakeholder stereotype.

ue [Package] 3. Mission Use Cases[Skyzer Mission Use Cases] |

= .. /" aise Cases

~ T 7 .
// zlse Casex i Provide Disaster
{ Support Non-Combatant Operations S Assistance
\ Mission \ gUseCssENumbE:UC wstakeholders
{U=sCams ombe S1C1.0F 2 Person of Interest
- {eoncarn = Survival, Safety, Mission Parformancs)
%
ustakeholders
«Performers
Navy Support
{concemn = Logistics. Maintsinability}

7 «Use Cases re «Use Casen

{ Support Mobility Missions | Conduct SAR
[UseCase Number = UC 2.0} {UseCase Numbsr = UC 1.1} i;
4 astakeholders
First Responders
feoncerm = Mission Parformanos, Flesxibility}

«Performers " I,
Skyzer System «Use Casex N

Conduct Surveillance
{UseCase Numbef™= UC 3.1}

2

«stakeholders
«Performers

C3 Operator
foncerm = Mission Performance, Respensivensss, Flexibijty}

= —— & o e — S
«Use Casen ~ - s e "'-\\ «wstakeholders

Support C3 Mission e \
[UseCase Number = UG 20) —— Provide Communication Ground Forces
. _ . {concarn = Compatibility, Mission Performance}
{UseCase Number = UC 2.1)

Figure 18. Skyzer Mission Use Cases in SysML v1

A SysML vl use case maps to a SysML v2 use case definition. The SysML v1 actors map to
SysML v2 actors and the SysML v1 use case subject maps to the SysML v2 use case subject. The
SysML vl association between the use case and its actors map to a feature membership between
the use case and each of its actors in SysML v2.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
25

4. Example SysML v1 to SysML v2 Conversion

The SysML v2 use cases in Figure 19 correspond to the SysML v1 use cases in Figure 18. The
use case definitions are depicted using the standard definition symbol with compartments for its

objectives, subject, and actors. The use case specializations are depicted with the specialization
symbol.

SkyzerMissionUseCases_ \

«use case def» «use case def»
«use case def» Cor:clijjztcsa::vﬁllﬁ; nee ConductSAR ProvideDisasterAssistance «use case def»
ProvideCommunication ~ciors actors actors SupportMobilityMissions
actors " firstResponders firstResponders actors
firstResponders grrztizsggrr:iesrs personOfinterest personOfinterest navySupport
grounqurce's, personOfinterest ~objectives . objectives skyzerSys'tem
) objectives obieciives obj obj . objectives
obj obj 4 subject subject obj
skyzerSystem skyzerSystem

v £

«use case def» «use case def»
Support_C3_Mission SupportNonCombatantOperationsMission
actors actors

navySupport navySupport
operator objectives
skyzerSystem obj

objectives subject
obj skyzerSystem

Figure 19. Skyzer Mission Use Cases in SysML v2

The Use Case Number can be mapped to a short name in the same way that was shown for the
requirement id. The SysML v1 stereotypes and their properties can be mapped to corresponding

elements using the SysML v2 language extension mechanism that is described in the Transform
Stereotypes section below.

4.1.7 Transform Activities

The next step in the transformation was to transform the activities which are generally shown in
SysML vl activity diagrams. The activities in the Skyzer Mission Model are contained in the
Mission Behavior package and some additional activities are contained in the Use Cases package.
A partial view of the SysML v1 activity diagram called ‘Non-Combatant Operations - Scenario 1’

is shown in Figure 20. This activity is intended to realize the SysML vl use case in Figure 18
called Support Noncombatant Operations Mission.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
26

4. Example SysML v1 to SysML v2 Conversion

act [Non-Combatant Operations - Scerario 1_]]

«Tasks
NCQ 1: Prepare/Configure

«Tasks
MOB 2: Take Off

Perform
Wictim

«Perfarmers:
Resoue

EPIRE

«Perfarmers

N
Receive
| Distress can

—_—
|

S

Sent Request

Additional Air
Support

=Peiformei
Alr Force

S
Recsive
Support

Request From
Air Force

ordinater

Co

=Peiformenrs

Rescue

——
|
|

Figure 20. Activity Diagram for Non-Combatant Operations Scenario in SysML v1

This activity contains actions with control flows and one object flow (not shown). In parts of the
activity diagram, there are multiple control flows that connect to a single action (not shown). This
is often modeled by connecting multiple flows to a join node and then connecting the outgoing
edge of the join node to an action, but there were no join nodes or other control nodes in this model.

This activity diagram contains two sets of swim lanes. The horizontal swim lanes are intended to
correspond to various elements in the Skyzer Mission domain that the activities are allocated to.
However, the swim lanes are not related to the blocks in this model. The vertical swim lanes
correspond to a partitioning of actions into other activities, but again there was no relation between
the swim lane and any other activity.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
27

4. Example SysML v1 to SysML v2 Conversion

The SysML vl activities transform to SysML v2 action definitions and the SysML vl actions
transform to SysML v2 actions. The initial transformation only included the activity and its
decomposition into actions. A partial view of this decomposition is shown in Figure 21. The swim
lanes were not included in the initial transformation and deferred to the post-processing where the
swim lanes can be better integrated into the model. This swim lanes were removed as part of the
pre-processing.

«action def»
Non-Combatant Operations - Scenario 1

\ 4

«action»
Sent Distress Call

«action»
Receive Distress Call

A 4

«action»
Sent Request Additional Air Support

A 4

«action»
Receive Support Request From Air Force

Figure 21. Action Flow for Non-Combatant Operations Scenario in SysML v2 (partial)
4.1.8 Transform Interactions (e.g., sequence diagrams)

The next step in the transformation was to transform the interactions which are generally shown
in SysML vl sequence diagrams. The use case called ‘Activate and Launch UAV’ in Figure 22 in
the Mission Use Cases package contains an activity diagram in Figure 23 called ‘Activate and
Launch UAV’ and a sequence diagram in Figure 24 with the same name. The sequence diagram
is intended to be a further refinement of the activity diagram.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
28

4. Example SysM

L vl to SysML v2 Conversion

wblocks
«Performers

Skyzer System

parts
: Air Vehicle

: Control Station

: Recovery System
: Payload

and

properties

: Plan Mission

: Load Mission Payload

: Execute Air Vehicle Pre-Flight

: Transfer Air Wehicle to Flight Deck
: Execute Mission

UC 1.1.6 Activate

S

astakeholders
«Performers

Ground Crew
{concern = Compatibility, Ergonomics, Maintainability, Safety}

Launch UAV

X

«stakeholders
«Performers

Navy Support
{concern = Logistics, Maintainability}

: Finalize Mission
«Performers

UCARS

%

«stakeholders
«Performers

properties

: Finalize Mizzio

T UAV Operator

{concern = Responsiveness, Mision Performance}

Figure 22. Activate and Launch UAV Use Case Diagram Contains the Activate and Launch Sequence

Diagram

in Figure 19b (partial)

(‘activity [Activate and Launch UAV]]
b d (" UAV operator P (uAv operator .
UAV is | UAVis place t DI: h | Control Station p . (UCARS system | load final
activated for into ready T.I‘:.‘Va - sent a signal to [RAST system guilc uiv o e thata to
launch by UAV state for == i rﬂ]tuedl RAST system | 7“| release UAV hold point the contral - |
operator | launch 3 :Qﬂ;: | torelease UAV - \. station |
|
e e e el —
(L | (INMARSAT link
™ ransfer
Control stat P r— UAV to BLOS e
A Tl + UAV operator |— - control to BLOS Communication | UAV is in @®
et chata release UAV ‘Communication System for Launch state
\ ~ System flying trol
in order for
UAV operator
to control or
monitor the
UAV flight path
if flying
autonomously.
.

Figure 23. Activate and Launch UAV Activity Diagram in SysML v1 (partial)

sd [Activate and Launch UAV])

«Performers E
UAV : Skyzer System

o Activate UAY
L

2: UAV Ready

«Performers astakeholders ©
Control Station : Skyzer System «Performers %
T : UAV Operator

! ”
|
1
1
1
|

State

3: Display UAV State

4: Launch UAY

i

Figure 24. Activate and Launch UAV Sequence Diagram in SysML v1 (partial)

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach

29

4. Example SysML v1 to SysML v2 Conversion

An interaction in SysML vl transforms to an occurrence in SysML v2. The SysML v1 parts and
their lifelines transform to parts in SysML v2. The SysML vI messages transform to SysML v2
messages.

Figure 25 depicts the corresponding model fragment in SysML v2 for the SysML vl sequence
diagram in Figure 24. The rendering in Plant UML uses the compartment notation to depict the
parts that are interacting, the messages (e.g., flows) between them, and the message sequence.
Commercial tools are expected to support the more standard visualization shown in Figure 24.

«occurrence def»
ActivateAndLaunch_UAV

flows

Activate_UAV
Display UAV_State
Launch_UAV
UAV_Ready_State
parts

controlStation: ControlStation
uav: SkyzerSystem
uav_Operator: UAV_Operator

successions
noname first Activate_UAV then
UAV_Ready_State
noname first UAV_Ready_State then
Display_UAV_State
noname first Display_UAV_State then
Launch_UAV

Figure 25. Activate and Launch UAV Sequence in SysML v2 (partial)

Note: This will be represented by a more conventional sequence diagram in commercial tools
4.1.9 Transform State-Based Behavior

The next step in the transformation was to transform the state-based behaviors which are generally
shown in SysML v1 state machine diagrams. States in SysML v1 transform to states in SysML v2
and transitions in SysML vl transform to transitions in SysML v2. The entry, exit, and do
behaviors and transition effects in SysML v1 generally transform into corresponding actions in
SysML v2. There are no state-based behaviors in this model.

4.1.10 Transform Parametrics

The next step in the transformation was to transform the parametric constraints which are generally
shown in SysML vl parametric diagrams. The constraint blocks and constraint properties in
SysML vl transform to constraint definitions and constraint usages in SysML v2. The constraint
parameters in SysML vl transform to input parameters of the constraint in SysML v2. Binding

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
30

4. Example SysML v1 to SysML v2 Conversion

connectors in SysML v1 transform to binding connections in SysML v2. There are no parametrics
in this model.

4.1.11 Transform Requirements Relationships

The next step in the transformation is to transform the requirements relationships including satisfy,
verify, derive, refine, trace, and copy. There were several trace relationships used between
requirements in the SysML vl Skyzer model. The trace relationship was mapped to a
corresponding dependency relationship in the transformed SysML v2 model. Figure 26, is an
example of the dependency relationship using the textual notation.

dependency from operationalRequirements::imagingCapability to missionRequirments::imagingCapability;

Figure 26. Example of the Dependency Relationship Using the Textual Notation

Figure 27 depicts the SysML v1 measures of effectiveness previously shown in Figure 12 and the
requirements they are asserted to satisfy. For example, the cruise speed MOE is asserted to satisfy
the Cruise Speed requirement.

beld [Package] 5. Mission Farametric| Measures of Effectivensss | |

«blocks
Mission MoEs

cruise speed == 171
ecovery condition >= 0.3}
max payload weight >= 200}
radius »= 200}

ional endurance == 4}
launch & recover sea state »= 5;

p
wsatisfys
s

wblocks
Skyzer Mission Domain

\
\

“~
~

«performanceRequirements
Cruise Speed

«performanceRequirements
Max Payload Weight

ld="13.2"

Text = "The UAV cruise
speed shall be at least 170
knots”

Id="1.3.3"

Text = "The mission payload
shall be not less than 200
Ibs total in four individually

e -7
- -
~

-
esatisfys

or more. "

segments 50 Ib

«performanceRequiremants
Operational Radius

ld="134"

] # 7 Text = "The Skyzer UAV
= | < P shall have and operational
oen cruise speed : knots q - ssatisfys radius of 200nm while
max payload weight : lbs [————-— T 77 sustaining cruise speed
operational radius : nm g - = - 2
operational endurance : - e aiatieast #00/Ibiof
launch & recover sea state * Integem - - payload and hovering 15
«moez recovery condition : Real [. T - i minutes at the turn around
|~ ~ ssatisfys point "
' . usatisfyn T~
\zsatisfys ™ = «performanceReguirements

UAV Operation Period

E arequirements
UAV Launch and Recover in

aperformanceRequirements

High Sea States

Id="13.7"
Text = "The system shall
have minimum endurance

y Condition

of 4 hr loiter at 50 nm radius”

ld="11142"

Text = "The system shall to
be able to Launch and
Recover in sea states five
without causing damage to
the UAV, ship or crew.”

Id="135"

Text = "The Skyzer UAV
shall be able to be
recovered with at least 30%
remaining fuel weight and
at least 200 Ib of payload.”

Figure 27. Requirements Satisfied by the Measures of Effectiveness in SysML v1

The transformation specification transforms a satisfy relationship in SysML vI to a satisfy
requirement usage in SysML v2. This satisfy requirement usage has significantly more semantics
than the SysML v1 satisfy relationship and includes the ability to evaluate whether the requirement
is satisfied. For this transformation, a SysML vl satisfy relationship was transformed to a
requirement allocation relationship in SysML v2. The allocation relationship is used more like a
SysML vl satisfy relationship.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
31

4. Example SysML v1 to SysML v2 Conversion

Figure 28 shows the SysML v2 measures of effectiveness and the requirements that are allocated
to them. The Plant UML visualization renders the MOEs, the requirements, and their allocation
relationships in the compartment notation.

6 «part» B

missionMOEs: MissionMOEs

attributes
cruise speed: knots
Naunch & recover sea state: Integer
max payload weight: Ibs
operational endurance: h
Noperational radius: nm

allocations
noname connect cruiseSpeed to 'cruise
speed’
noname connect maxPayloadWeight to
'max payload weight'
noname connect operationalRadius to
'operational radius'
noname connect uavOperationPeriod to
'operational endurance'
noname connect recoveryCondition to
'launch & recover sea state'

requirements
cruiseSpeed: Cruise Speed
maxPayloadWeight: Max Payload Weight
maxSpeed: Max Speed
operationalAltitude: Operational Altitude
operationalRadius: Operational Radius
recoveryCondition: Recovery Condition
\uavOperationPeriod: UAV Operation Period

/

Figure 28. Requirements that Are Allocated to the Measures of Effectiveness in SysML v2

The verify, derive, and refine relationships in SysML v1 map to corresponding verify, derive, and
refine relationships in SysML v2. A trace requirement can be mapped to a dependency. A copy
relationship is no longer required since SysML v2 enables reuse of a requirement with
requirements usages.

4.1.12 Transform Other Elements

Most of the primary elements in SysML v2 would have been transformed through the previous
steps. The next step in the transformation was to transform other elements that were not addressed
by the previous transformation steps.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
32

4.

One example is the transformation of the SysML v1 Mission Data Model in Figure 29 that is
contained in package within the Support Elements package. A data element is represented in the
class. This requires pre-processing to convert each data element to a
SysML v1 block. The block is then converted to a SysML v2 item definition. The data elements
in the SysML v1 model are related by stereotyped dependencies in this example, although they a
more rigorous conversion may relate the date elements using connection definitions similar to

SysML vl model as a UML

associations in SysML vl1.

Example SysML vl to SysML v2 Conversion

bdd [Package] Mission Data Model[ICF Data Model]J

«Capability»
Mission Area /ROC

-~

«Need»
Need
™ has need
~

~

s
s
/ |
4 I
/
«Performers
Platform

I
. I
|
I

«Resides Onx

N\
«Resides [lnn\
Mo
Ny

~

«Performers
PersoniRole

«Performers
System I

«Scenarios
achieves

- -

enables -

-
performedUnder - -
-

3 Desired Effect

definedBySetOf Mission - — — — — — — — - - — — 4
1.* |

| :

specifiedBy
|
= N Condition |
N composed0fTheTime |
“ OrderedSequenceDf

|
|
|
|

wActivitys

aperformsa
Task

«Performed AW Specified»

Measure

N «Consumesy ~
. - | ~]
\ «exchangesy *Producess,
N - [= _s«Constrained By» |
~
hY) -) ™
-~
Resources / | - Aule
Information implemented By i Y
| TTPI
' N Doctrine |
/ | |
’ N «consumess P
~ gproduces» | - |
/uExchangess N | sConstrained Bys _ =
/ ~ - I
| -
/ N - |
A, -7 |
cActivitys

System Function |

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach

Figure 29. Mission Data Model in SysML v1

33

4. Example SysML v1 to SysML v2 Conversion

The corresponding Mission Data Model in SysML v2 is shown in Figure 30. The stercotyped
dependencies in the SysML vl model are mapped to metadata that is displayed as a key word.
Some, but not all the stereotypes were mapped, such as Mission achieves Desired Effect.

MissionDataModel \
«item def» «metadata def» «metadata def» «metadata def» ‘«metadata def» «metadata def»
Person/Role - _ _ _ _ achieves performUnder enables constrainedBy produces
e I el T Tt
’ , S -
l’«depend» , : ~ _«depend» Tt
o S~ Tt
S T~ «item defy RN
«iten def» , | «item def» Mission |
1 - = =
Need) ! - Task oo Homs i
! | _-" P AN task: Task !
i h - Pid | SO~ ~ | |
/ \ - 4 | N N 1 !
! \ g e | \ AN N | !
! , ’ «iperformUnder» \ N N «ienables» ‘«#achieves» I
| fedepends K «depend» K 1 «depend» \ N > «depend» 1" «depend» |
1 \
[/ ’ \ 4 !
1 / \ 3 » |
! ‘ / \ \ citem defs !
| I «iter defy ! dconstrainedBy» |¢item def> \ 1 Mission Area /ROC «item def» .
| ¢depend» ! |System Function \ «depend» Condition :«depend” ! ems Desired Effect \¢«depend»
! . - \ , mission: Mission I
I , . ~ . \ I . |
h | , \ ~o ~___ I ! -7 |
| | ’ [N RN | I P H
| ’ \ ~ < \ | [Phd
! 1/ «dependy \\\«depend» S~ - «depend» | ,“’fz:g:ﬁgj” _ -7 «depend» !
RN 1
! w \\ Sl » S~ | 4 ;-7 !
A citem defs . ~ < item defs ~ Mitem defr |o - =1 !
) System \ «depend» TTP/ Doctrine Measure ,/)
1 — N i ’ ’
1 4 N 4 7’
7z \ ~ ’ v
oy \ ~ 7z -
I/ «depend» \ «depend» AN e o
" S RS e -7
«item def TTe--o «item defy e e T
Platform Resources / Information <~~~ =~~~ 7"

Figure 30. Mission Data Model in SysML v2

4.1.13 Transform Stereotypes

The SysML v1 Skyzer Mission Model contains several stereotypes. Some of the stereotypes
include stereotype properties. For example, the SysML vl model includes an extension of a
requirement called a JCIDS requirement that includes a property to identify the type of
requirement. The type of requirement is an enumeration that includes the set of values KPP, KSA,
OSA, and APA. The stereotype definition is shown in Figure 31 along with an example of the

stereotype applied to RequirementA.

Profile Diagram NAWVAIR | Mizsion Reguirement Data Types1]J

asteretypes areguirements

JCIDS «JCIDS»

[Class] RequirementA
-reguirementkind : Reguirementiind [0..1] 1= "_]': ';'1;-"'??-';%;-: irement

wEnumerations Text ="The Slt._s.t_em shall ..."

fEmmEmenitin requirementKind = KPP
KPP :
K3A

OSA

APA
Thig iz an example of a
JCIDS requirement

Figure 31. A SysML vl Example of an applied stereotype to Requirement A

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
34

4. Example SysML v1 to SysML v2 Conversion

SysML vl stereotypes map to corresponding concepts that extend SysML v2 concepts. The JCIDS
requirement extension in SysML v2 is shown below in Figure 32, using its metadata extension
mechanism. JCIDS is defined as a requirement. The metadata def enables jcids to be used as a key
word. The requirementsKind property is defined by an enumeration definition that identifies a
valid set of discrete values.

requirement JCIDS [*] nonunigue;

metadata def jcids > SemantichMetadata {
e I:uaseT;u;gE = ICID5 meta SyshL::ReguirementlUsage;
attribute requirementskind:Requirementskind:

h
enum def Reqguirementskind {KPP;KSA; OSA;APA;]

Figure 32. JCIDS Requirement Extension in SysML v2

The example below in Figure 33, applies the jcids key word to the requirement called
requirementA with an id (e.g., short name) of ‘1.1°. The abbreviated text statement is included
following the key word doc. The requirementsKind is a KPP. The graphical notation is similar to
the SysML v1 notation in Figure 31.

#jcids requirement <'1.1"> requirementA {
doc /* The system shall ... ¥/
@cids
reguirementskind=Requirementskind::KPP;
H
h

Figure 33. Example Applies the jcids Key Word to the Requirement Called RequirementA with an ID (e.g.,
short name) of ‘1.1°

4.1.14 Transform Customizations

The SysML v1 model includes tool-specific customizations such as a glossary, acronym list, a
legend, and some custom images. In general, customizations will require pre-processing and
special mapping rules. For example, the list of acronyms is defined as ‘terms’ as part of the tool
customization. Each term could be mapped to an alias in SysML v2. An example is the term CCC
that is an acronym for Command, Control, and Communications in the SysML v1 model. The term
can be mapped to an alias of Command, Control, and Communications in the SysML v2 model as
follows: alias CCC for 'Command, Control and Communication';

There are other elements such as views and viewpoints, which were not in the SysML v1 model
and therefore were not addressed by the transformation.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
35

4. Example SysML v1 to SysML v2 Conversion

4.2 Post-Process the SysML v2 Skyzer Model

This step involved post-processing the transformed SysML v2 model to take advantage of some
of the SysML v2 modeling capabilities. The SysML v2 model was significantly reorganized and
the model was refactored to align with the usage focused modelling paradigm.

The usage focused modeling paradigm leverages the SysML v2 definition and usage pattern that
supports decomposition and specialization of parts, actions, requirements, and many other kinds
of SysML v2 elements. A decomposition with usage focused modeling results in a hierarchy of
parts, actions, requirements, etc. This contrasts with the block decomposition in SysML v1 which
decomposes blocks into parts that are typed by blocks, and those blocks are further decomposed
into parts that are typed by blocks. The more direct part decomposition in SysML v2 results in a
straightforward parts tree. In the usage focused paradigm, the parts can be defined by part
definitions, but each part definition represents a black box that does not contain parts of its own.
This enables multiple parts to be defined by the same black box part definition but have their own
part decomposition. This approach facilitates reuse of the black box specifications and can be
applied at each level of design.

Similarly, a SysML v1 activity decomposes into call behavior actions that call activities that further
decompose into call behavior actions. This again contrasts with a more direct-action
decomposition in SysML v2 resulting in an action tree. The actions can be defined by action
definitions which specify their inputs and outputs. This same usage focused decomposition pattern
applies to virtually all SysML v2 concepts.

The model organization for a usage focused paradigm separates the packages that contain
definition elements from the packages that use the definition elements. The packages that use the
definition elements contain the usage hierarchies such as a parts tree and action tree, and the cross
connections such as between parts and actions.

The post-processing steps were performed incrementally as follows:

e Reorganize the SysML v2 model packages

e Refactor parts hierarchy

e Refactor parts interconnection

e Capture action definitions in action definitions package
e Refactor action hierarchy

e Integrate behavior

e Refactor the requirements

e Refactor requirements traceability

e Additional refactoring

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
36

4. Example SysML v1 to SysML v2 Conversion

4.2.1 Reorganize The SysML v2 Model Packages

The first post-processing step was to establish a new package structure to begin re-organizing the
SysML v2 model. The new package structure takes advantage of the usage focused modeling
paradigm which was briefly summarized in section 4.2.

As shown in Figure 34, this package structure separates the definition elements from the usage
elements. The Definitions package contains nested packages for PartDefinitions, ItemDefinitions,
AttributeDefinitions, RequirementDefinitions, UseCaseDefinitions, ActionDefintions, and other
specialized definition packages which are not shown. The usage of the definition elements is
contained in the Mission Domain_Level, System Level, and ReqgirementsAllocations packages.

package SkyzerMissionModel refactored{
import Definitions::*¥;
import LanguageCustomization::*;

package Definitions{
import PartDefinitions::*;
import ItemDefinitions::*;
import AttributeDefinitions::*;
import RequirementDefinitions::*;
import UseCaseDefinitions::*;
import ActionDefinitions::¥*;

package PartDefinitions{ss}
package TtemDefinitions{«s}
package AttributeDefinitions{«s}
package RequirementDefinitions{«s}
package UseCaseDefinitions{«s}
package ActionDefinitions{«s}
h
package <'9'> SupportElements {«s}
package <'11'> LanguageCustomization{ss}
package Mission Domain_Level{
package StakeholderConcerns{ss}
package MissionSpecification{«s}
package PartsTree{s«s}
package ActionTree{ss}
package EventSequenceScenarios{es}
h
package System Level{
package PartsTree{s«s}

}

package RequirementsAllocations{«}

}

The package structure is reorganized to separate the definition elements from the usage elements and take
advantage of the usage-focused modeling paradigm

Figure 34. Package Structure

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
37

4. Example SysML v1 to SysML v2 Conversion

The Mission Domain_Level package contains nested packages for StakeholderConcerns,
MissionSpecification, PartsTree, ActionTree, and EventSequenceeScenarios, which each contain
usage elements defined by definition elements that are contained in the Definitions package.

The SupportElements package contains the Glossary, References, and other supporting
information that was included in the original SysML vl model. The LanguageCustomization
package contains the key word extensions. The package number from the original SysML v1
model is captured as a short name in brackets for both the SupportElements and
LanguageCustomization packages. This numbering can be applied consistently to all packages if
desired but was included here to highlight a use of this language feature.

Capture part definitions into PartDefinitions package. The next post-processing step was to
capture the part definitions that were contained in multiple packages in the transformed model in
the PartDefinitions package. The parts are deleted from each part definition so that this package
contains a flat list of part definitions with no hierarchy as shown in the partial list of part definitions
in Figure 35. The hierarchy is reconstituted in the next step as a parts hierarchy. As part of this
reorganization, several redundant part definitions were identified, and the redundant elements were
carefully deleted to ensure that the appropriate relationships were reflected in the model.

package PartDefinitions{
/4 the following part defs were contained in the SearchAndRescueDomain package
part def Airforce;
part def DistressSailBoat;
part def Floater;
/o part def MissionCommander; redundant
part def Payload;
//part def RescueCoordinator; redundant
part def SearchAndRescueDomain;
part def ShipUtilities;

// the following definitions were contained in the mission structure package
part def AirVehicle{«s}

part def ArealfInterest;

part def ControlStation;

part def DDG_ClassShip :»> NavyShip; // subclass was added

part def DOD;

part def Environment;

part def Facilities;

part def GPS Satellite :» Satellite{ss}

part def GroundCrew :> NavySupport;

The Part Definitions package contains a flat list of part definitions that were contained in multiple other packages
in the transformed model.

Figure 35. Part Definitions Package

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
38

4. Example SysML v1 to SysML v2 Conversion

4.2.2 Refactor Parts Hierarchy

The next post-processing step was to reconstitute the system hierarchy at the mission and system
level by creating a parts tree. The parts tree is intended to correspond to the original block
decomposition structure in SysML v1.

However, multiple inconsistencies from the original SysML v1 block hierarchy were identified
and reconciled. For example, the block hierarchy for the OV-1 in Figure 5, the Skyzer Mission
Domain in Figure 6, the Skyzer Black Box Interfaces in Figure 10, and the block hierarchy
associated with the swim lanes in the activity diagram in Figure 20 were not the same.

The top of the refactored part hierarchy is the part called SkyzerMissionDomain which is shown in
Figure 36. The skyzerEnterprise subsets skyzerEnterprise a which is further decomposed to
include the skyzerSystem as shown in Figure 37. The skyzerSystem subsets the skyzerSystem a
parts tree which is shown in Figure 38. The parts hierarchy is reconciled as a single consistent
parts tree where the parts are defined by part definitions. The perform action in Figure 36 was
added later in the process.

part skyzerMissionDomain:SkyzerMissionDomain{
perform ActionTree::'MNon-Combatant Operations - Scenaric €_a';
part airforce: Airforce; //added this part from SearchAndRescueDomain
part navy:>»navy_a;
part target :»> target_a,
part environment :> environment_a;
//part operationalEnvironment a:> operationalEnvironment;
part dod:DOD;
part localFirstResponders:LocalFirstResponders;
part satellite :» satellite a;
part ddg_ClassShip :» ddg_ClassShip_a;
part littoralCombatShip:LittoralCombatShip;

// added the following to align with the use case actors

part operator:0perator; // added based on use case actors, different from uav_Operator
part groundForces:GroundForces;

part firstResponders:FirstResponders; // may be redundant with LocalFirstResponders
part personOflnterest:PersonOflnterest; // may be redundant with targe.lostCivilian
part uav_Operator:UAV Operator; // part of the skyzertnterprise?

part uav:UAV; // subsets skyzer system and part of the skyzerEnterpriser?

part ucars:UCARS;

part inmarsat:INMARSAT,

part gps Satellite:GPS_Satellite;

part rescuse :> rescuee_a;

part us_Airforce:US_Airforce; // may be redundant with airforce;

part skyzerEnterprise :» skyzerEnterprise_a{} //corresponds to black box spec in vl model

The top of the refactored part hierarchy is the part called SkyzerMissionDomain
Figure 36. Skyzer Mission Domain Parts Tree

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
39

4. Example SysML v1 to SysML v2 Conversion

part skyzerEnterprise af
part skyzerSystem:> skyzerSystem_a;
part skyzerTeam:SkyzerTeam;
part supportTeam:SupportTeam;
part trainingTeam:TrainingTeam;
part maintenanceTeam:MaintenanceTeam;
part facilities:Facilities;

The skyzerEnterprise_a parts tree which includes the skzyerSystem part
Figure 37. Skyzer Enterprise Parts Tree

part skyzerSystem_a:SkyzerSystemy
part airVehicle:AirVehicle;
part controlStation:ControlStation;
part recoverySystem_a :> recoverySystem;
part payload:Payload;
part rast:RAST; // added this based on use case actors

Figure 38. Skyzer System Parts Tree
4.2.3 Refactor Parts Interconnection

The next post-processing step was to reconstitute the system interconnection at the mission and
system level. The parts interconnection view is intended to correspond to a refinement of the
original SysML internal block diagrams (ibd) at the mission and system level.

The SysML v1 Skyzer model did not include a mission level ibd. It did include the Skyzer OV-1
in Figure 5 which implied the interconnection but used dependencies between parts instead of
connectors. The corresponding SysML v2 view was shown in Figure 7. The SysML v2
connections were added as shown in Figure 39 to ensure a consistent structural representation that
connects the system and its parts to other external parts that are part of the mission and enterprise.

connect skyzerEnterprise.skyzerSystem to dod;

connect skyzerEnterprise.skyzerSystem.airVehicle to target.arealfInterest;
connect skyzerEnterprise.skyzerSystem.airVehicle to localFirstResponders;
connect skyzerEnterprise.skyzerSystem.airVehicle to target.lostCivilian;
connect skyzerEnterprise.skyzerSystem.airVehicle to satellite;

connect skyzerEnterprise.skyzerSystem.airVehicle to environment.weather;
connect 5kyzeanterprise.SEFEEPSyEtem.ccntrnlStatiDn to navy.navyShip;
connect skyzerEnterprise.skyzerSystem.recoverySystem to navy.navyShip;

connect skyzerSystem to skyzerTeam{es)

connect skyzerSystem te maintenanceTeam;

connect skyzerSystem to trainingTeam;

connect skyzerSystem.airVehicle to skyzerSystem.control5tation;

The connections between the system and its parts and the parts of the mission and enterprise

Figure 39. Connections

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
40

4. Example SysML v1 to SysML v2 Conversion

4.2.4 Capture Action Definitions in the ActionDefinitions Package

The next post-processing step was to capture the action definitions from the transformed model in
the ActionDefinitions package. The activities in the SysML v1 model are contained in the Mission
Behavior and Use Case package. The activities contain actions, control nodes, control flows, object
flows, and swim lanes.

A partial view of one of the activities called ‘Non-Combatant Operations - Scenario 1° is shown
in Figure 20. This activity and associated action hierarchy was significantly refactored as
described in the next section. To accommodate this refactoring, an action definition was created
to correspond to each nested action contained in the activity to enable the same action definitions
to be used in more than one action flow view. As was done with the PartDefinitions package, the
ActionDefinitions package contains a flat list of action definitions without any hierarchy. The
hierarchy is reconstituted in a follow-on section.

4.2.5 Refactor Action Hierarchy

The action hierarchy from the transformed model in Figure 21 was refactored through a series of
steps. First, there were two action definitions in the Mission Behavior package called ‘Non-
Combatant Operations - Scenario 1’ and ‘Non-Combatant Operations - Scenario 2’. Each of the
action definitions contained multiple actions. Scenario 1 contained 56 actions and Scenario 2
contained 55 actions. After further analysis, it was noted that both Scenarios were the same except
that Scenario 1 contained an additional action called 'Release UAV to Second Location'. An action
called Scenario 0 was created to capture the common actions, action hierarchy, control nodes,
control flow, and object flows enabling Scenario 1 and Scenario 2 to subset Scenario 0 and inherit
its common features and modify as needed.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
41

4. Example SysML v1 to SysML v2 Conversion

The activities for Scenario 1 and Scenario 2 from the original SysML v1 model include two sets
of swim lanes. The vertical swim lanes represent a further partitioning of the actions into other
actions. For example, the first vertical swim lane in the activity diagram in Figure 20 is called
‘NCO 1: Prepare/Configure’. In the refactored model, these actions are part of the action hierarchy.
For example, the nested actions contained in the “NCO 1: Prepare/Configure’ swim lane are nested
in the action called NCO 1: Prepare/Configure' as shown in Figure 40.

action 'NCO 1: Prepare/Configure'{
action 'Sent Distress Call';_// sent or send?
action 'Receive Distress Call';
action 'Sent Request Additional Air Support'; // sent or send?
action 'Receive Support Request From Air Force';
action 'Receive Request Report’;
action 'Send Mission Orders'; // missing from Scenario 0

The action ‘NCO 1: Prepare/Configure’ was represented as a swim lane in the SysML vl model but is represented
as an action with nested actions in SysML v2 that is part of the action hierarchy.

Figure 40. Action ‘NCO 1: Prepare/Configure’

The horizontal swim lanes are intended to represent blocks that the activities are allocated to.
However, the allocation was not explicitly included in the SysML vl model. The implied
allocation was refactored to represent an action that is performed by a part. This is illustrated in
Figure 36 and shown below in Figure 41, where the part called skyzerMissionDomain contains a
perform action that refers to the action called ‘Non-Combatant Operations - Scenario 0_a' that is
contained in the ActionTree package.

part skyzerMissionDomain:SkyzerMissionDomain{
perform ActionTree.:'Non-Combatant Operations - Scenario 0_a';

The part called skyzerMissionDomain contains a perform action.

Figure 41. Perform Action

Each allocated action from each swim lane from the original SysML v1 model can be transformed
into a perform action of a part that corresponds to the swim lane. This was not done as part of the
transformation process since the part hierarchy was significantly altered during the post-
processing, and this would have created additional work to reassign the perform actions to the
parts in the refactored part hierarchy. Instead, this was done as part of the next step to integrate
behavior.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
42

4. Example SysML v1 to SysML v2 Conversion

4.2.6 Integrate Behavior

The SysML vl Skyzer model captures behavior in terms of use cases, activity diagrams, and
sequence diagrams. The transformed model captures each of these behaviors. However, there are
many opportunities to integrate the behavior in SysML v2 including the use cases, action flow,
message/event sequences, and state-based behavior.

One example of an opportunity to integrate behavior in the Skyzer Model is the behavior associated
with activating and launching the UAV. There is a use case called ‘Activate and Launch UAV’
which contains an activity diagram and a sequence diagram with the same name. The use case
diagram and a portion of the activity diagram and a portion of the sequence diagram are shown in
Figure 22, Figure 23, and Figure 24 respectively.

Another activity diagram in the Mission Behavior package called ‘Non-Combatant Operations -
Scenario 1’ also contains actions to ‘Activate UAV’, ‘Launch UAV’, and several other actions that
are part of the Activate and Launch sequence. A portion of this activity was shown in Figure 20
but the actions to activate and launch the UAV were not shown. The actions that support activate
and launch are nested within the vertical swim lane called ‘MOB 2: Take Off’, which in turn is
nested within the vertical swim lane called ‘NCO 6: Respond to Emergencies’. In addition, these
actions have an implied allocation to various blocks based on the horizontal swim lanes that they
are contained in.

The use case, activity diagrams, and sequence diagram related to activate and launch in the SysML
vl model contain separate elements that are not explicitly related to one another. Ensuring
consistency among elements from different diagram kinds (e.g., activity, sequence, state, use case)
is often difficult to do within the SysML vl model, but there are opportunities to integrate this
behavior in SysML v2.

The approach to integrate this behavior involved establishing a consistent action hierarchy and
action flow for the ‘Non-Combatant Operations - Scenario 0’, which was renamed ‘Scenario 0’.
The Scenario 0 action and its nested actions were referenced as perform actions of the parts that
compose the Skyzer mission domain parts hierarchy in Figure 36, Figure 37, and Figure 38. The
messages that were transformed from the SysML v1 sequence diagram were then further integrated
into this structure as messages between these parts. This resulting behavior between the actions in
Scenario_0 performed by the parts and the messages between the parts can be further analyzed for
consistency, and additional constraints can be added to ensure the integrated behavior specifies the
proper sequence of messages and actions.

This same approach can be applied to other behaviors to ensure the overall model captures the
desired integrated behavior consistent with the structure. As a result of this effort, there will no
doubt be updates to the use cases, actions, event/message sequences, and states if applicable.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
43

4. Example SysML v1 to SysML v2 Conversion

A few potential inconsistencies that surfaced included a missing actor (INMARSAT) from the
‘Activate and Launch UAV’ use case in Figure 22. Also, UCARS is part of the Skyzer system
rather than a separate actor. There also appear to be some actions missing from the action flow to
support the message ‘Load Final Mission'. Potential inconsistencies would need to be reviewed
with subject matter experts and the model can be refined based on the results of the review.

4.2.7 Refactor the Requirements

The SysML v1 Skyzer model had many mission level requirements in the Mission Requirements
package which were transformed to requirement definitions as described previously. There were
several nested packages within the Mission Requirements package that each contained a set of
requirements such as the Operational Requirements in Figure 16. The refactoring focused on
establishing a top-level requirement called requirement <'1"™> missionSpecification that contained
the mission requirements in a single requirements hierarchy to aid in traceability analysis (e.g.,
requirements allocation, derivation, satisfaction, verification). A partial view of the requirements
hierarchy is shown in Figure 43.

package MissionSpecification{
requirement <'1'> missionSpecification{
requirement <'1.8'> missionRequirements{
requirement airworthiness;
requirement imagingCapability:ImagingCapability{
requirement imageProcessing:ImageProcessing;
T
requirement uas_ControlSegment;
requirement uvav_Capabilities{es}
i
requirement <'1.1'> operationalRequirements {=}
requirement <'1.2'> functionalRequirements{es}
requirement <'1.3'> performanceRequirements{«s}
requirement <'1.4'> designConstraints{es}

}

Figure 42. Mission Requirements Hierarchy (Refactored)

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
44

4. Example SysML v1 to SysML v2 Conversion

This is also an opportunity to leverage the more precise nature of SysML v2 requirements and
identify critical requirements that can be specified more formally using requirements constraints.
For example, the measure of effectiveness for cruise speed is specified in a requirement that can
be expressed more formally as follows:

requirement operational Radius{
doc /*The Skyzer UAV shall have an operational radius of 208nm wh
carrying at least 108 Lb of payload and hovering 15 minutes at tf
attribute operationalRadius :> ISQ::length;
attribute payloadWeight :> ISQ::mass;
attribute hoveringTime :»> ISQ::time;
require constraint {operationalRadius »= 288 [nmi]}
assume constraint {payloadWeight »>= 188 [1b]}
assume constraint {hoveringTime »>= 15 [minute]}

e sustaining cruise speed,
turn around point.¥*/

1Ll
ne

Figure 43. Formalizing the Operational Radius Requirement with Constraints

Notice also in Figure 44, that a mix of metric and English units are used for the attributes of the
requirement that are from the SysML v2 quantities and units’ libraries. This is accommodated by the
SysML v2 model and a conformant tool can enable units checking and dimensional analysis.

4.2.8 Refactor Requirements Traceability

The requirements traceability can be significantly impacted by the changes to the structure and
behavior described previously. An assessment of requirements allocation, satisfaction,
verification, derivation, and refinement should be performed to validate they reflect the proper
traceability.

For example, the operational radius requirement in Figure 43 was allocated to a measure of
effectiveness (moe) on a part called missionMOEs in the transformed SysML v2 model. However,
this part was no longer needed in the refactored part structure and now should be re-allocated to
be a moe of the skyzerEnterprise.

4.2.9 Additional Refactoring

There are many other opportunities beyond what was discussed in this paper to reorganize and
refactor the model and leverage SysML v2 capabilities. However, this provides a starting example
to build on as the community gains experience with model conversion.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
45

5. Observations and Recommendations

5 Observations and Recommendations

This early effort to manually convert a SysML v1 model to a SysML v2 model is being performed
before the availability of commercial SysML v2 modeling tools that will automate part of this
process. These results should help set expectations for the effort required, the approach, and the
potential benefits of model conversion. However, it should be recognized that these are early

observations and are likely to evolve as commercial tools become available and the industry gains

experience with model conversion. The observations and recommendations include the following:

1.

The conversion steps for transformation post-processing, and validation should be performed
incrementally. Performing a batch conversion will make it more difficult to validate the model
and will limit the opportunities to significantly improve the model quality and leverage SysML
v2 modeling capabilities.

The post-processing step should apply the usage-focused paradigm to more fully leverage the
SysML v2 modeling capabilities. This will require significant reorganization and refactoring
of the model. The model reorganization establishes packages that contain the reusable
definition elements that serve as black box specifications with no decomposition. Separate
packages are created to contain the mission and system hierarchy that typically include a parts
hierarchy, an action hierarchy, and a requirements hierarchy. The usage elements in the
hierarchies may be defined by the definition elements as needed to facilitate reuse.

Establish a consistent parts hierarchy. The core structure of the SysML v1 model is based on
the block decomposition generally starting with a top-level block that serves as a mission
context. There may be other implicit structure associated with the OV-1, the swim lanes in
activities, the lifelines in sequence diagrams, and the actors in use case diagrams. These
implicit structures may not be entirely consistent with the block decomposition. The SysML
v2 model provides an opportunity to provide a consistent parts hierarchy from the top-level
mission context part down to the lowest level of design.

Integrate the behavior with the structure including states, actions, message sequence, and use
cases. The initial focus for establishing the integrated behavior is to establish a consistent
action decomposition based on the SysML v1 model. There may also be opportunities to create
action specializations that share common sets of actions. This has been difficult to do in SysML
v1 but is straightforward to do in SysML v2. After the action tree is clearly established, the
parts that perform the actions can be established. Although there were no states in the Skyzer
model, it is anticipated that the states can then be integrated by identifying which states enable
which actions. There were considerable sequence diagrams in the SysML v1 model which were
transformed to messages in the SysML v2 model. The messages had to be carefully integrated
to ensure they were sent across the correct connections. It is also critical that they be integrated
with the action flow, but this may depend on the selected methodology.

The post processing may yield significant changes to the system structure and behavior,
particularly as it is identified will resolve redundancies, inconsistencies, and other gaps. This,
in turn, may impact the requirements allocation/satisfaction and other requirements
relationships. In the Skyzer SysML v1 model, there were several requirements that were
satisfied by the in the Mission MOE’s block. However, this block was not included in the

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
46

5. Observations and Recommendations

SysML v2 model, and a Skyzer Enterprise part was introduced that contained the MOE’s. This
change impacted the requirements allocations.

There are many opportunities to leverage SysML v2 capabilities to further refine the model
and add both precision and expressiveness. An example is the ability to formalize selected
requirements with formal constraint expressions that can be evaluated as pass or fail. The
standard quantities and unit’s library is much improved over SysML vl in both precision,
expressiveness, and usability. The language adds new concepts to model variability, trade
studies, metadata, and many other concepts. SysML v2 also provides the ability to define an
alias for any name and can leverage annotations to establish a glossary of terms. There will be
new opportunities to integrate with many other applications through the standard API including
analysis, configuration management, visualization, and other electrical, mechanical, software,
and verification tools.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
47

6. Summary

6 Summary

The transition from SysML v1 to SysML v2 should be carefully planned to include updates to an
organization’s methods, tools, and training. A particular project should determine when to make
the transition to SysML v2 based on near-term, mid-term, and long-term considerations of the
benefits, costs, and risks of transition. The timing of the transition on a program should typically
be at the start of a new program or system upgrade, with the goal to minimize disruption and
maximize the benefit. The program should ensure the proper expertise and resources are available
to support their transition to SysML v2 in accordance with the program plan. A program may
choose to convert an existing SysML v1 model or start with a new SysML v2 model depending on
the state of the SysML vl model and how well it will support the SysML v2 modeling objectives.

Converting a SysML vl model to a SysML v2 model includes pre-processing the SysML vl
model, transforming and post-processing the SysML v2 model, and validating that the SysML v2
model adequately reflects the original intent of the SysML v1 model. In addition, the organization
should assess the impact to artifacts that were derived or generated from the SysML v1 model and
update those artifacts as required. The conversion process should be performed systematically and
incrementally, and the results should be validated as part of each increment.

The transformation from a SysML vl model to a SysML v2 model is anticipated to be enabled by
tool automation that implements the SysML v1 to SysML v2 transformation specification. It is
also anticipated that pre-processing of the SysML vl model will be required to remove
customizations that are not supported by the standard transformation.

To maximize the advantages of the conversion, it is advisable to reorganize and refactor the
transformed SysML v2 model in accordance with the usage-focused paradigm to more fully benefit
from the SysML v2 modeling capabilities. If done properly, the additional effort can yield a much
more integrated SysML v2 model that is more precise, expressive, regular, interoperable,
extensible, and usable than the original SysML v1 model.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
48

7. References

7 References

Object Management Group (OMG). (2023, July). About the OMG System Modeling Language
Specification Version 2.0 Beta.
https://www.omg.org/spec/SysML/2.0/Betal.

SysML vl to SysML v2 Transition Community (2024, January 22), SysML vl to SysML v2
Transition Plan Template (2024, January 22).
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml_v1 to_sys
ml_v2_transition_guidance

Seidewitz, E., and Bajaj, M. (2023, October). Installation. GitHub.
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/install/jupyter.

Software Engineering. (Accessed 2024, February). Web page. https://www.cto.mil/sea/swe.

Systems Engineering Research Center (SERC). (2020, May 1). Skyzer IM90-20 Mission Model.
https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa’-
49be-9{44-

€7361699211d/master/documents/_18_5_2 8db028d 1512132621231 771993 109678/view

s/ 18 5 2 8db028d 1512132621231 771993 109678.

Technical Paper: SysML v1 to SysML v2 Model Conversion Approach
49

https://www.omg.org/spec/SysML/2.0/Beta1
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml_v1_to_sysml_v2_transition_guidance
https://www.omgwiki.org/MBSE/doku.php?id=mbse:sysml_v2_transition:sysml_v1_to_sysml_v2_transition_guidance
https://github.com/Systems-Modeling/SysML-v2-Release/tree/master/install/jupyter
https://www.cto.mil/sea/swe
https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa7-49be-9f44-e7361699211d/master/documents/_18_5_2_8db028d_1512132621231_771993_109678/views/_18_5_2_8db028d_1512132621231_771993_109678
https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa7-49be-9f44-e7361699211d/master/documents/_18_5_2_8db028d_1512132621231_771993_109678/views/_18_5_2_8db028d_1512132621231_771993_109678
https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa7-49be-9f44-e7361699211d/master/documents/_18_5_2_8db028d_1512132621231_771993_109678/views/_18_5_2_8db028d_1512132621231_771993_109678
https://ime.sercuarc.org/alfresco/mmsapp/mms.html#/projects/PROJECT-ee341bee-eaa7-49be-9f44-e7361699211d/master/documents/_18_5_2_8db028d_1512132621231_771993_109678/views/_18_5_2_8db028d_1512132621231_771993_109678

	Technical Report: SysML v1 to SysML v2 Model Conversion Approach
	Abstract
	Contents
	1 Introduction
	1.1 New in SysML v2
	1.2 SysML v1 to SysML v2 Transition

	2 SysML v1 to SysML v2 Model Conversion Process
	2.1 Pre-Process
	2.2 Transform
	2.3 Post-Process
	2.4 Validate

	3 Other Considerations in the Model Conversion Process
	3.1 Whether to Convert
	3.2 Incremental Model Conversion
	3.3 One-Way Transformation
	3.4 Classified Models
	3.5 Configuration Management

	4 Example SysML v1 to SysML v2 Conversion
	4.1 Transform SysML v1 Skyzer Model to SysML v2
	4.1.1 Transform Package Structure
	4.1.2 Transform Blocks and their Parts
	4.1.3 Transform Ports and Connectors
	4.1.4 Transform Value Properties and Value Types
	4.1.5 Transform Requirements and their Hierarchy
	4.1.6 Transform Use Cases
	4.1.7 Transform Activities
	4.1.8 Transform Interactions (e.g., sequence diagrams)
	4.1.9 Transform State-Based Behavior
	4.1.10 Transform Parametrics
	4.1.11 Transform Requirements Relationships
	4.1.12 Transform Other Elements
	4.1.13 Transform Stereotypes
	4.1.14 Transform Customizations

	4.2 Post-Process the SysML v2 Skyzer Model
	4.2.1 Reorganize The SysML v2 Model Packages
	4.2.2 Refactor Parts Hierarchy
	4.2.3 Refactor Parts Interconnection
	4.2.4 Capture Action Definitions in the ActionDefinitions Package
	4.2.5 Refactor Action Hierarchy
	4.2.6 Integrate Behavior
	4.2.7 Refactor the Requirements
	4.2.8 Refactor Requirements Traceability
	4.2.9 Additional Refactoring

	5 Observations and Recommendations
	6 Summary
	7 References

