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Executive Summary 

The Office of the Director, Developmental Test, Evaluation, and Assessments in collaboration 
with the Office of the Director, Operational Test and Evaluation developed this Modeling and 
Simulation (M&S) for Test and Evaluation (T&E) Guidebook to provide information on the use; 
development; and verification, validation, and accreditation (VV&A) of M&S activities that 
support the developmental test (DT) objectives of Department of Defense systems. M&S VV&A 
during DT is a critical element of continuous validation of systems from conception through 
deployment and operation. The guidebook presents definitions, processes, and techniques to 
encourage higher-quality implementation and utilization of M&S in developing defense 
capabilities. 

This guidebook is intended to serve as a desk reference for test engineers and analysts, as well as 
project managers who provide oversight of engineering and analysis activities. It is not intended 
to prescribe any methods or techniques as standard or preferred; rather, this guidebook will 
describe recommended best practices for use, development, and VV&A of M&S activities; the 
situations to which they are best suited; and how to collect and utilize their outputs. In addition to 
laying out the technical details of these methods, the guidebook summarizes the key points, 
including benefits, of using each method. These key points give project managers and other 
decision makers a fundamental understanding of the techniques being used and what they should 
expect from them. 

The guidebook emphasizes scientific test and analysis techniques, including design of 
experiments (DOE), for VV&A of M&S and analysis of its output. Topics covered include the 
design of physical experiments and deterministic computer experiments and how to combine 
data from physical experiments with M&S. The chosen DOE method dictates the information 
that can be gathered. Careful consideration must be applied when choosing a test approach as 
different DOE methods serve different purposes. This guidebook describes some of these designs 
and when they are appropriate. 

Finally, the guidebook looks at the analysis of M&S results, with a focus on VV&A. Decisions 
based on M&S depend greatly on what information was gathered and how it was analyzed. It is 
imperative that experimenters, testers, systems engineers, and project managers mutually 
understand what constitutes quality test design and analysis so that informed decisions can be 
made to support good systems engineering. The guidebook includes the following topics: 

• Exploratory data analysis.

• Hypothesis testing.

• Statistical uncertainty.
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• Unbalanced data.

• Sequential analysis.

• Metamodel techniques.

• Predicted probability validation.

• Time series analysis and functional data analysis.

• Methods for uncertainty quantification.

• Model validation levels.
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1 Introduction 

1.1 Purpose of the Guidebook 

This guidebook provides guidance on the development; verification, validation, and accreditation 
(VV&A); and use of modeling and simulation (M&S) in support of developmental test and 
evaluation (DT&E), live fire test and evaluation (LFT&E), and operational test and evaluation 
(OT&E) of Department of Defense (DoD) systems. M&S can complement physical testing and 
improve the outcomes of the campaign of learning across the acquisition life cycle. The 
guidebook presents definitions, processes, and techniques to promote high-value utilization of 
M&S in developing and evaluating defense capabilities. The guidebook serves as a desk 
reference for test engineers and analysts responsible for VV&A of M&S. It also provides 
program leadership insight into the value of M&S in support of test and evaluation (T&E) and 
how to integrate M&S into an effective and efficient T&E program. 

For DT&E, this guidebook is part of a broader set of guidance developed to support the 
implementation of a DT&E paradigm shift. Key enablers include model-based systems 
engineering (MBSE) and digital engineering (DE) (authoritative source of truth); incorporation 
of technological innovations; a supportive infrastructure; and a transformed culture. This 
paradigm shift leverages the principles of Agile and scales them to move DT&E holistically from 
a serial set of activities to an integrative framework focused on capability and outcome-focused 
testing, Agile scalable evaluation, and enhanced test design facilitating an ongoing campaign of 
learning. Fully leveraging M&S will provide the agility required to support an iterative DT&E 
campaign, consistent with the “constructive” contribution to a full spectrum of live, virtual, and 
constructive testing. 

For OT&E and LFT&E, this guidebook complements DoD Manual (DoDM) 5000.102, 
“Modeling and Simulation Verification, Validation, and Accreditation for Operational Test and 
Evaluation and Live Fire Test and Evaluation.” M&S is commonly used in OT&E and LFT&E 
evaluations when testing an end-to-end capability in a live environment is unsafe, infeasible, or 
prohibitively expensive. This guidebook supports the policy captured in DoD Instruction (DoDI) 
5000.98, “Operational Test and Evaluation and Live Fire Test and Evaluation,” which promotes 
an expanded use of M&S in OT&E and LFT&E including using the latest advances in science 
and technology and digital technologies (e.g., DE and MBSE) in OT&E and LFT&E. The 
guidebook provides details on processes, test design methods, and statistical analysis methods 
that support the updated policy and guidance. 
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1.2 Scope of the Guidebook 

The guidebook begins by discussing the use of M&S for T&E as part of the capability 
development and management processes needed to ensure that the models are used for their 
intended purpose across the acquisition life cycle. Section 1 of the guidebook provides a high-
level description of the role that M&S plays in T&E and, more broadly, how M&S and T&E 
combine with systems engineering practices to support system development. Section 2 describes 
the processes required to verify, validate, and accredit models for use in T&E and the best 
practices associated with following those processes. 

The guidebook then describes the use of scientific test and analysis techniques (STAT) for the 
development of M&S for T&E, including design of experiments (DOE) for VV&A of M&S and 
analysis of its output in support of T&E. The guidebook describes experimental designs, when 
they are appropriate, and their intended results. Section 3 details the development of a test design 
for M&S in T&E. 

The guidebook then provides techniques for the analysis of M&S results, with a focus on 
VV&A. It is imperative that testers, systems engineers, analysts, and program managers (PMs) 
mutually understand what constitutes quality test design and analysis to ensure that the program 
collects the data needed to validate models and quantifies the risks associated with using M&S 
for T&E. Section 4 details these best statistical practices for analyzing the results of the model. 

Appendix A provides a catalog of popular experiment designs; Appendix B outlines policy and 
guidance for M&S in T&E; and Appendix C provides information about relevant training. 

The guidebook is not intended to prescribe any methods or techniques as standard or preferred; 
rather, the guidebook describes best practices for use, development, and VV&A of M&S 
activities; the situations to which they are best suited; and how to collect and utilize their outputs. 
In addition, the guidebook summarizes the key points, including benefits and risks, of each 
method. 

Although the guidebook is not a textbook that describes methods in detail, technical personnel 
should find sufficient explanation to apply the methods, along with recommended references for 
further details. 

1.3 Role of M&S in T&E 

Incorporating M&S into DoD acquisition can help PMs balance the cost, schedule, and 
performance of acquisition in accordance with DoD Directive (DoDD) 5000.01, “The Defense 
Acquisition System,” and DoDI 5000.98. The Government Accountability Office (GAO) 
recommends using knowledge-based acquisition practices that include M&S and, as stated in the 
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GAO Special Report, “Weapon Systems Annual Assessment: Knowledge Gaps Pose Risks to 
Sustaining Recent Positive Trends,” GAO found that “attaining high levels of knowledge before 
significant commitments are made during product development drives positive acquisition 
outcomes.” 

M&S can reduce the cost of T&E by allowing the testing of systems and processes in a virtual 
environment before physical prototypes are built (Krasner 2015; Boehm 2021). M&S can also be 
used to replicate real-world scenarios that would be too expensive, dangerous, or time-
consuming to recreate physically (McDermott and Van Aken 2020). It can be used to train 
personnel on new systems or processes, reducing the cost of training and the potential for errors 
during the actual operation (McGinnity 2016). M&S can serve as a powerful tool for conducting 
comprehensive and rigorous tests and evaluations to reduce program risk and improve system 
performance. It can simulate extreme environmental conditions, high-stress situations, rare 
events to test the system’s robustness and reliability, or unobserved user behaviors to evaluate 
the system’s performance and effectiveness (Beling et al. 2021). 

Despite these potential benefits, programs must be careful when incorporating M&S into 
acquisition. M&S aims to provide valid forecasting of system performance under operationally 
representative conditions to minimize the risk associated with M&S-informed decisions in T&E. 
However, M&S can only approximate the actual system regardless of the investment. Therefore, 
programs must establish confidence in M&S before accepting its results to inform decisions (for 
more information, see the North Atlantic Treaty Organization Guidelines for M&S Use Risk 
Identification, Analysis, and Mitigation), and PMs must decide the level of risk they are willing 
to accept. Best practices include using statistical techniques to quantify the uncertainty of how 
well those models represent reality. 

Statistical methods play an important role in verification and validation (V&V) of models. It can 
be unclear, however, what methods are most appropriate and what information these methods 
provide to the PM. A 2020 MITRE review on the use of M&S for T&E found that guidance for 
verification methods is too generic and that the efficiency and effectiveness of verification 
testing can be improved by adding the use of statistical methods (Cortes and Ortiz 2020). 
Therefore, Sections 2.2.1 and 4 of this guidebook describe methods for V&V of models and how 
these methods reduce the risk of using M&S for programmatic decisions. 
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2 M&S Processes 

Successfully applying M&S to T&E requires a series of detailed steps and a deep understanding 
of the system or process being modeled. These steps are vital for ensuring the accuracy of the 
results and providing the most information to decision makers. Section 2 discusses the processes 
needed to successfully include M&S in T&E. 

The VV&A process covers the crucial steps needed to ensure that the model is designed 
correctly, accurately mirrors the real-world system it aims to simulate, and is fit for its intended 
purpose. These steps are required by DoD and are the key to establishing confidence in the 
credibility and reliability of the M&S. 

STAT methods are central to understanding the simulation results, spotting patterns, and making 
informed decisions. Using the correct statistical methods allows for a comprehensive 
understanding and characterization of model responses, including their statistical uncertainty, 
across all input variations. In conditions where live data cannot be collected, statistical models 
can be useful in extrapolating expected performance with associated uncertainty. Ultimately, it is 
crucial to have subject matter expertise to interpret whether the statistical analysis results and the 
discrepancies they expose between live test data and M&S have any practical significance. 
Subject matter expertise is also useful in evaluating models in regions where live data cannot be 
collected and determining the value of any statistical extrapolations into those regions. 

Programs that use M&S for T&E must include all relevant stakeholders in M&S development. 
This involvement ensures that the simulation results are meaningful and helpful to all 
stakeholders. 

2.1 VV&A Processes 

Programs that use M&S to inform decisions should certify the models and simulations for their 
intended use through the VV&A process. The purpose of VV&A of M&S in T&E is to ensure 
that all stakeholders have a clear understanding of the M&S capabilities and limitations and the 
uncertainty around the simulation results. DoD adheres to stringent VV&A processes to ensure 
the appropriateness of M&S results for a specific purpose, as defined in DoDI 5000.61, “DoD 
Modeling and Simulation Verification, Validation, and Accreditation.” Verification involves 
checking that the model has been correctly implemented and operates as intended, and validation 
ensures that the model accurately represents the real-world system or scenario it is designed to 
simulate. This process helps to identify and correct any errors or inconsistencies in the model, 
ensuring that the results it produces are as accurate and reliable as possible. V&V activities are 
not done at a single point in time but rather are life cycle processes in which any pertinent new 
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evidence (e.g., new live test data) is to be used to refine and validate the model on an ongoing 
basis. 

Accreditation, on the other hand, is the formal recognition that a model or simulation is suitable 
for a specific purpose. It involves an assessment of the model’s credibility, considering factors 
such as its accuracy, reliability, and relevance to the scenario being simulated. This process 
provides assurance that the model or simulation can be trusted to provide accurate and reliable 
results in the context of its intended use. 

DoDI 5000.61 establishes policy, assigns responsibilities, and prescribes procedures for the 
VV&A of models, simulations, distributed simulations, and associated data and establishes the 
basis for credible M&S across DoD. Each Service published additional guidance to clarify roles 
and responsibilities within its organization. In addition to referencing DoDI 5000.61, the Service 
guidance also references Military Standard (MIL-STD) 3022, “Documentation of Verification, 
Validation, and Accreditation (VV&A) for Models and Simulations.” MIL-STD-3022 
recommends standardizing core VV&A documents and provides templates for each document. 
Table 2-1 provides outlines of the four core VV&A documents (Accreditation Plan, V&V Plan, 
V&V Report, and Accreditation Report); information that is common and shared across the 
documents appears in italicized font in the table. Typically, different groups prepare and use 
these documents at varying times, and a significant portion of the information contained in each 
is common and should be shared. The templates offer a unified structure and the ability to 
interface between the four documents promoting uniformity and efficiency. Furthermore, the 
plans and reports generated using these templates act as a communication tool among the 
participants in the VV&A processes. The PM, T&E Working-Level Integrated Product Team, 
and M&S Working Group (MSWG) should consider generating information equivalent to that 
identified in MIL-STD-3022 using digital and model-based engineering techniques rather than 
creating documents. The PM must ensure that both the creators and the receivers of the 
information have the appropriate tools and skills to receive the information in the new formats. 
The program may find that digital delivery methods are faster, are less error-prone, and enable 
reuse of M&S internal and external to the program, thus improving capability delivery across 
DoD. 

For OT&E and LFT&E, DoDM 5000.102 provides details on M&S VV&A. The manual 
highlights that M&S and the related VV&A strategy, including the required resources, will be 
outlined in the Test and Evaluation Master Plan (TEMP)/T&E strategy. DoDM 5000.100, “Test 
and Evaluation Master Plans and Test and Evaluation Strategies,” outlines the information 
required in TEMPs/T&E strategies, as well as in V&V plans. 



2. M&S Processes 

MODELING AND SIMULATION FOR T&E GUIDEBOOK 
6 

Table 2-1. Outlines of Four Core VV&A Documents 

 
Source: MIL-STD-3022 

The Institute for Defense Analyses (IDA) Handbook on Statistical Design and Analysis 
Techniques for M&S Validation recommends the following nine-step approach to developing the 
V&V process (Wojton et al. 2019). See the IDA Handbook for more details on each step, as well 
as its linkage to statistical elements of M&S VV&A. 

1. Develop the intended use statement. 

2. Identify the response variables or measures. 

3. Determine the factors that are expected to affect the response variable(s) or that are 
required for operational evaluation. 

4. Determine the acceptability criteria. 



2. M&S Processes 

MODELING AND SIMULATION FOR T&E GUIDEBOOK 
7 

5. Estimate the quantity of data that will be required to assess the uncertainty within the 
acceptability criteria. 

6. Iterate the Model-Test-Model loop until desired model fidelity is achieved. 

7. Verify that the final instance of the simulation accurately represents the intended 
conceptual model (verification process). 

8. Determine differences between the model and real-world data for acceptability criteria 
of each response variable using appropriate statistical methods (validation process). 

9. Identify the acceptability of the model or simulation for the intended use. 

2.1.1 Accreditation for Specific Use 

Programs that use M&S for T&E will need to accredit their model(s) for a specific use; this is 
not a broad acceptance of the model or modeling tool for any use. DoDI 5000.61 defines 
accreditation as “the official certification that a model, simulation, or distributed simulation is 
acceptable for use for a specific purpose.” The Services offer carveouts for general-use models 
that may be accredited for a class of applications, but these models must also be accredited for 
their specific use when using the model for T&E. For example, Air Force Instruction 16-1001 
states that the Deputy Chiefs of Staff may accredit common-use models (models provided to 
multiple DoD Components) and general-use models (models or representations that are common 
to many models or simulations). Similarly, Army Regulation 5-11 states that M&S can be 
accredited for a generic set of applications by the Army official with general oversight 
responsibility for that class of applications and that as long as the M&S application falls within 
the guidelines of the class accreditation, the entire M&S need not undergo V&V for a new 
application. Finally, Secretary of the Navy Instruction (SECNAVINST) 5200.46 states that M&S 
services, tools, and data should be reused to the extent possible. The Director, Operational Test 
and Evaluation (DOT&E) TEMP Guidebook mandates that, for OT&E, existing M&S 
capabilities previously accredited for other applications must complete another VV&A process 
and be accredited for each new intended use. DoDM 5000.102 highlights that operational test 
agencies accredit models for OT&E objectives and LFT&E organizations accredit models for 
LFT&E intended uses. However, as stated in the DOT&E TEMP Guidebook, previous VV&A 
may simplify the process because the previous efforts have been documented and the new 
VV&A effort typically can focus on the changes. 

Ultimately, it is up to the PM to identify how to accredit the model for use in T&E in conjunction 
with the accreditation authority as specified in the applicable Service policy and guidance (see 
Table B-2 in Appendix B). DoDM 5000.102 requires that the M&S strategy, including the data 
needed for V&V activities, is included in the TEMP and/or T&E strategy to ensure that adequate 
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data are collected to support VV&A activities. This requirement highlights the need for PMs to 
understand how models are verified and validated using statistical techniques. 

2.2 The Role of Statistical Analyses in M&S VV&A 

Statistical methods enable the characterization of models’ responses across the full range of their 
inputs, including their associated uncertainties. Subject matter expertise is also required to 
determine whether the results of statistical analyses and the differences between the live test data 
and M&S that the analyses reveal have a practical impact on system performance or mission 
execution. Portions of this section have been summarized from Chapter 2, Section E and 
Chapter 3, Sections B through E of the IDA Handbook (Wojton et al. 2019); see that reference 
for additional details. 

Statistical concepts and analyses play important roles throughout the VV&A process described in 
Section 2.1 of this guidebook. Table 2-2 links information needed during the VV&A process to 
the appropriate statistical concepts needed in the process. For example, M&S responses should 
be compared with live test data in an iterative model-test-model approach, ideally beginning 
before live data are available. The M&S responses used both for characterizing the behavior of 
the responses and for comparison purposes should be selected using statistical design approaches 
discussed subsequently in this guidebook: classical DOE if the M&S is stochastic, and design for 
computer experiments (including space-filling designs) if the M&S is deterministic (or nearly 
deterministic). See Section 3 of this guidebook for additional details on DOE. Before making 
comparisons with live data, the M&S responses should be characterized and understood using 
variation analysis and metamodeling (statistical emulation); see Section 4.4.5. 
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Table 2-2. Information Supporting VV&A and Associated Statistical Concepts 

VV&A Information Statistical Concepts 

M&S Requirements and Intended Use Response variables 
Factors 
Stochastic versus deterministic M&S 

Data Requirements Classical DOE 
Design for computer experiments 

Iterating Model-Test-Model Classical DOE 
Design for computer experiments 
Variation analysis 
Metamodels 
Comparing live test data to M&S responses 

Verification Analysis Parametric emulators 

Validation Analysis Parametric emulators 
Comparing live test data to M&S responses 

Uncertainty Hypothesis testing and interval estimation 
 Source: IDA Handbook (Wojton et al. 2019) 
 

Variation analysis. Variation analysis includes sensitivity analysis and Monte Carlo analysis. 
Monte Carlo analysis can be applied to M&S responses that are stochastic. This type of analysis 
involves running the model many times using the same inputs to obtain the variation in responses 
that occur. Sensitivity analysis can be used for both stochastic and deterministic M&S. It can 
involve using large changes in model inputs to generate the data needed to develop a parametric 
emulator, or it can involve using small changes in inputs to determine whether the resulting 
changes in responses are reasonable (i.e., correspondingly small and predictable). By 
characterizing the changes in inputs that drive significant changes in responses, variation 
analysis helps quantify uncertainty and guides where data from live testing and/or M&S 
improvements should be sought or made. 

Metamodels (also called statistical emulators). Metamodels (see Section 4.4.5) use M&S 
responses generated using statistical design approaches to build a statistical model of the M&S. 
The metamodel can be used to predict responses and their variation across a range of input 
conditions, including those not explicitly simulated, without repeatedly rerunning the model. 
Both the choice of design approach and the type of statistical model used depend on whether the 
M&S is stochastic or deterministic. As explained in the IDA Paper, “Metamodeling Techniques 
for Verification and Validation of Modeling and Simulation Data” (Haman and Miller 2022), 
metamodels of deterministic, discrete responses should be built using nearest neighbor or 
decision tree interpolators. Metamodels of deterministic (or near-deterministic), continuous 
responses should adopt Gaussian process (GP) interpolation. Continuous or discrete stochastic 
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responses should use a generalized additive model (GAM). Analogous to variation analysis, 
metamodels help characterize uncertainty and aid in the selection of live test points. Inputs that 
strongly affect responses suggest the need for additional live test data, and those that do not 
suggest the opposite. 

Comparing live test data to M&S responses. After characterizing the M&S responses, live test 
data should be compared with those responses to identify and understand the differences between 
the two. Differences between means, variance, or other aspects of the distributions of the two 
sets of data should be analyzed. The appropriate statistical methods to use depend on whether the 
responses are binary or continuous, and if the latter, whether their distributions are skewed or 
symmetric. The nature of the factors most affecting the responses also matter, including whether 
there are no varying factors across the data (univariate); there are factors that affect means, but 
there is no designed experiment associated with them (distributed); or there is a designed 
experiment with factors that determine the differences between the M&S responses and live test 
data (see Section 4.2.6). 

The purpose of the analysis is to determine whether the differences between the M&S responses 
and live test data are statistically significant. To do so, the statistical techniques used generally 
test hypotheses: the null hypothesis (Ho), that there is no difference between a response and its 
corresponding live test data; and the alternative hypothesis (H1), that there is a difference. The 
data are analyzed to either reject the null hypothesis—meaning there is a statistically significant 
difference between the M&S and live test data—or to fail to reject the null. Section 4 provides 
additional discussion on some of the hypothesis testing techniques that are most relevant to 
validating models. However, it is important to note that hypothesis tests are a tool to guide 
decision making and not a decision. The overall accreditation decision should leverage not only 
hypothesis test results but also the uncertainty quantification (UQ) across the domain of the 
intended use. Subject matter expertise is critical for assessing the practical impact of any 
identified differences and/or the ability of the model to extrapolate into areas that cannot be 
executed in live testing. 

2.2.1 Uncertainty Quantification 

As models and simulations are increasingly used to support T&E and acquisition program 
decisions, it is important to remember that they are imperfect representations of the real-world 
system. In other words, “all models are wrong, but some are useful” (Box 1976). UQ focuses on 
quantifying the uncertainty present in model predictions and live data independently and the 
contributions of specific sources to overall uncertainty, whereas validation is focused on 
quantifying the uncertainty in the difference between models’ predictions and live data. Both are 
necessary for decision makers to fully understand the risk accepted when making decisions based 
on simulation output; this is especially important when the M&S intended use includes 
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extrapolation and prediction outside the envelope in which the real-world system can be tested. 
By understanding the uncertainties, the risk can be quantified for using M&S as surrogates, and 
informed decisions can be made about using M&S to improve outcomes. To understand the 
uncertainties, T&E is performed to verify, validate, and accredit the M&S. 

Figure 2-1 illustrates the role UQ plays in the V&V process. It is through this V&V process that 
stakeholders can thoroughly assess the correctness and credibility of M&S results. From a 
verification perspective, UQ provides a quantitative measure of the extent to which a 
computational model represents its underlying mathematical model. From a validation 
perspective, UQ accounts for uncertainties in both computational and experimental results when 
the two are compared to establish the extent to which the M&S results resemble the real-world 
data. 

There are generally two broad categories of uncertainty: statistical and knowledge (Wojton et al. 
2019).1 Statistical uncertainty is due to inherently random effects; can be better characterized by 
accumulating more samples (i.e., more replicates); and is generally characterized by a probability 
distribution. An example of statistical uncertainty is measurement error. In contrast, knowledge 
uncertainty is due to a lack of information and thus can be reduced by collecting data under new 
conditions, which provides new information, but generally cannot be characterized by a 
probability distribution.2 An example of knowledge uncertainty is the unknown performance 
capabilities of a foreign weapon system due to limited intelligence data. 

The UQ process consists of three key steps: 

1. Assess sources of uncertainty: Identify and quantify all sources of uncertainty in the 
model. 

2. Propagate uncertainties: Quantify the effect of input uncertainties on output variability. 

3. Assess output variability: Evaluate the estimated variabilities and their potential 
impact. 

Information on UQ methods, including recommended best practices for each step in the UQ 
process, can be found in Section 4.3. 

 
1 Aleatory and epistemic are also commonly used terms for statistical and knowledge uncertainty, respectively. 
2 Knowledge uncertainty is typically represented as an interval with no associated probability density function 
(PDF). However, it may be represented as a PDF that reflects the subject matter expert’s degree of belief (Cortes et 
al. 2021). Methods for eliciting subjective probability functions are outside the scope of this guidebook; an 
introduction to the topic can be found in the book Uncertainty: A Guide to Dealing with Uncertainty in Quantitative 
Risk and Policy Analysis (Morgan and Henrion 1990). 
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Source: Standard for Verification and Validation in Computational Solid Mechanics 

Figure 2-1. V&V Activities and Outcomes 

2.2.2 Evaluating Model Adequacy 

Whether a model is “good enough” to be validated and accredited depends on its intended use, 
the referent authority, its fidelity, the responses it is expected to generate, and the scope of its 
inputs that can be used to generate those responses. This section of the guidebook is a synopsis 
of the discussion in Chapter 1, Section D of the IDA Handbook (Wojton et al. 2019); see that 
reference for additional details. 

Intended use. A model’s intended use constitutes the specifics of how it will be used as part of a 
test program. Intended use comprises the model’s hierarchy (its fidelity and type consistent with 
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its purpose); its response variables (the outputs it will generate for the purposes of evaluation); 
the range of its input conditions and their intersection with the conditions over which live testing 
data will be available; and the differences between live data and model responses that are 
permissible (acceptability criteria). Identifying in model responses the kinds of uncertainty and 
their magnitudes that are relevant for the purposes of evaluation involves the details of the 
model’s implementation, the system being tested, and the model’s intended use. 

Referent authority. The referent is that against which the model is being compared, and the 
referent authority is the strength of credibility of a referent’s claim to be a high-fidelity 
representation of reality. Live data of the system would have the highest referent authority, but it 
may not always be available, especially in the early development phases of a program. In those 
situations, other models or subject matter expert (SME) judgment, which are less authoritative, 
may serve as the referent. Section 4.4 describes an approach for assessing referent authority. 

Fidelity. Fidelity is the degree to which the representation within a simulation is similar to a real-
world object, feature, or condition in a measurable or perceived manner. The DoD M&S 
Glossary defines fidelity as the accuracy of the representation when compared to the real world. 
Model hierarchy and fidelity span physics and engineering models (e.g., the Probability of Raid 
Annihilation Testbed (Thomas and Dickinson 2015), which comprises multiple physics and 
engineering sub-models); engagement models (e.g., the Enhanced Surface-to-Air Missile 
Simulation (ESAMS) (Baty et al. 1988)); mission-level models (e.g., SUPPRESSOR (Whitehurst 
et al. 1997)); and campaign-level models (e.g., the Logistics Composite Model (Boyle 1990)). 
Validation should be consistent with the model’s hierarchy and fidelity. Mission-level models 
can comprise aggregations of many engagement models. That aggregation includes all those 
models’ uncertainties, implying that mission-level models can have greater uncertainty in their 
responses compared to a single engineering or engagement model. A model’s uncertainty should 
be considered rigorously when using its responses for conducting evaluations. Approaches for 
doing so include comparing inputs and responses between the model and live testing, including 
their means, variances, and other parameters. Techniques for accomplishing these comparisons 
are discussed in Section 4 of this guidebook. 

If a series of models is used to evaluate performance of a complex system comprising multiple 
subsystems, live testing is unlikely to generate enough data to enable the use of simple statistical 
methods to quantify overall uncertainty in the models’ responses. Other techniques such as 
Monte Carlo error propagation in conjunction with SME judgment can be used to quantitatively 
and qualitatively assess the validity of the models’ responses and uncertainty (Ogilvie 1984). 

Responses. Selecting model responses appropriate to the test program and what the test is 
measuring is necessary for successful validation and accreditation. Responses such as overall 
mission success or force ratios following engagement are often accompanied by substantial 
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uncertainty and are unlikely to be capable of straightforward estimation using live test data. 
These attributes make such responses inappropriate choices for conducting rigorous validation 
and accreditation. A better approach for validating and accrediting a model as “good enough” is 
to use specific performance measures that strongly affect the overall mission success such as 
ranges at which an aircraft is detected when engaging threats or number of successful 
engagements versus total engagements. 

Scope. The scope of a model’s validity is defined by the range of inputs that can be used to 
generate responses for comparison with live test data and for face validation (subjective 
judgment by SMEs of whether model responses are appropriate). The initial determination of 
scope is accomplished by SMEs identifying the input conditions that should be important 
determinants of system performance. Scope can then be adjusted based on the responses obtained 
and their comparison with live test data. 

2.2.3 Combining Statistical and Subject Matter Expertise 

Methods for designing the combined M&S and live testing experiments and analyzing their 
results, enabling quantitative evaluation of the differences between modeling results and live 
testing data, are described in this guidebook (see Sections 3 and 4) and in detail in the references 
found in those sections. These methods combine classical experimental designs (Johnson et al. 
2012) with computer experiments (Santner et al. 2003; Fang et al. 2005; Kleijnen 2008), and, 
based on the variance in the differences, can inform estimates of uncertainty. This section of the 
guidebook is a synopsis of the discussion in Chapter 1, Section E of the IDA Handbook (Wojton 
et al. 2019); see that reference for additional details. 

Statistical methods cannot account for all sources of uncertainty. For example, knowledge 
uncertainty is due to a lack of information and thus cannot be reduced by collecting more 
replicates from either live testing or M&S, as previously described in Section 2.2.1 of this 
guidebook. Knowledge uncertainty can be reduced by collecting data that provide new 
information, for example, incorporating better theoretical descriptions into models, which 
involves the use of subject matter expertise. Moreover, the M&S may be used to explore system 
performance against future threats and in complex combat scenarios that cannot be replicated in 
live testing and that include substantial supposition on the part of SMEs. In these cases, 
collecting live test data is impossible and therefore evaluation of the results and their uncertainty 
can of necessity be substantially qualitative. Nonetheless, it is necessary to document the 
qualitative judgments reached and their bases, and judgments by SMEs should be obtained using 
rigorous approaches. 

Metamodels (or statistical emulators) (see Section 4.4.5) are a means of summarizing M&S 
responses across a wide span of inputs without using the simulation itself to generate each of the 
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responses (Haman and Miller 2022). Constructing a metamodel requires inputs from both subject 
matter and statistical experts regarding the factors that should most affect simulation responses 
and therefore be incorporated in the metamodel. Metamodels enable SMEs to judge whether 
simulations are quickly and efficiently generating reasonable responses across their full range of 
inputs, including those not covered by live testing. Metamodels also provide data on the variation 
in simulation responses, thus informing judgments regarding uncertainty. 

In summary, both statistical and subject matter expertise are needed to comprehensively assess 
M&S results and use those results in T&E and to support decision making. 

2.3 Participation in M&S Development and Execution 

To make the best use of M&S across the continuum of testing, programs need to develop the 
M&S VV&A strategy early in the development process when the program first identifies the 
need for M&S. This may mean developing a preliminary strategy as early as Milestone A to 
capture data from contractor testing. This includes identifying the intended use(s) of the model 
and output data, the required fidelity, and the methods and required data for V&V of the model. 
Representatives from the operational user, technology development, testing, and accreditation 
communities should provide input into the M&S VV&A strategy. The strategy is documented in 
the Decision Support Evaluation Framework and Integrated Decision Support Key (IDSK) (see 
Section 2.3.2), and it should address the VV&A activities, including required data, and the use of 
M&S output to support decisions across the program life cycle. 

2.3.1 Modeling and Simulation Working Group 

Programs should establish an MSWG under the T&E Working-Level Integrated Product Team. 
The size and capabilities of the MSWG should reflect the size and complexity of the simulation 
effort. The MSWG members should include representation from the following: 

• Operational user, who defines the problem and the intended use of the capability under 
development. 

• Developer, who designs and implements the M&S. 

• Testers, both those who conduct the V&V test of the M&S and those who use M&S 
output to support T&E events. 

• Accreditation agent, who conducts the accreditation assessment of the M&S. 

The MSWG should meet at least quarterly or when an event occurs that is likely to affect the 
M&S VV&A strategy. Significant changes to the intended use, required fidelity, system or test 
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scope, schedule, and resource availability are examples of events that necessitate MSWG review 
and revision of the M&S VV&A strategy. 

2.3.2 Connection to Capability Evaluation and Decision Support 

Testing and M&S provide data for capability evaluation to inform decisions throughout the 
capability life cycle. IDSK development uses a decision-evaluation-data thought process. 
Articulating the thought process into the IDSK provides a T&E strategy able to inform technical, 
programmatic, and operational decision makers. By making capability-evaluation-informed 
decisions, the risk that the capability does not meet technical requirements and mission needs is 
minimized. 

The IDSK aligns the generation of data from contractor, developmental, integrated, and 
operational testing and M&S events to the technical and operational capability evaluation and to 
the technical, programmatic, and operational decisions. The data may be collected from physical 
testing or from appropriately verified and validated M&S. For OT&E and LFT&E policy 
requirements, see DoDI 5000.98. The forthcoming DoDI 5000.DT, “Developmental Test and 
Evaluation,” will provide DT&E policy requirements. 

M&S can be both an IDSK data provider (e.g., supplying data or results for capability 
evaluation) and an IDSK data consumer (e.g., using test data to inform an M&S accreditation 
decision). For example, M&S can provide data to evaluate a capability that cannot be tested and 
must be evaluated using M&S, such as probability of raid annihilation. The M&S used to 
evaluate probability of raid annihilation may also have been a consumer earlier in the life cycle; 
the VV&A plan for the M&S requires evaluation of physically collected data to make the 
accreditation decision. 
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3 Design of Experiments to Support VV&A 

As previously described in Section 2.2, statistical analyses should underpin the M&S VV&A 
process. Section 3 describes methods for designing experiments to produce the required data for 
those statistical analyses. The M&S VV&A should compare M&S output to live data whenever 
possible, and this requires a combination of both physical experiments (Section 3.1) and 
computer experiments (Section 3.2). 

3.1 Design of Physical Experiments 

DOE methodologies integrate well-defined and structured scientific strategies with statistical 
techniques to gather knowledge about a system and then transform it into information that guides 
decision quality. The DOE process drives testers to determine exactly what questions need to be 
asked, how many resources are needed to answer those questions, and which analysis techniques 
are required to interpret the data and answer the test questions. 

Figure 3-1 depicts a generic input-process-output (IPO) diagram of a system or process. 

  
Figure 3-1. Input-Process-Output Diagram of a System or Process Under Testing 

The core principle of DOE is to make deliberate and systematic changes to the controllable 
factors (i.e., inputs) of a system and observe and estimate their effect on the response variables 
(i.e., outputs). The uncontrollable factors are variables that cannot be controlled in the test 
environment. In operational tests, these tend to be environmental factors, such as weather and 
temperature. In some cases, they are operator or user based (e.g., user experience, training, 
demographics). Uncontrollable factors are typically dealt with via replication, randomization, 
and blocking. 

• Replication: Performing test runs multiple times to allow for an estimation of uncertainty. 

• Randomization: Deliberately executing test runs randomly to eliminate potential biases. 
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• Blocking: A technique for removingthe effects of unwanted nuisance factors from the 
analysis. 

For a more detailed summary of how uncontrollable factors are handled, see the book Design 
and Analysis of Experiments (Montgomery 2013) and the MITRE Technical Report, “Modern 
Test Design and Analysis Playbook” (Cortes and Ortiz 2020). 

DOE methodologies help generate test efficiencies by simultaneously maximizing information 
gains and minimizing resources. Because the high cost of performing certain physical 
experiments is one of the key reasons why M&S is developed, DOE helps determine the optimal 
real-world test scenarios needed to ground the M&S. DOE balances test risk and resources by 
building designs tailored for specific test questions and objectives. Developing a good test design 
is about not only how many test points are collected but also which test points are collected and 
their relationship to each other. As a result, DOE provides cleaner and richer analyses that build 
predictive models to incorporate variability and uncertainties. 

Figure 3-2 shows the phases and the steps recommended to develop efficient and effective test 
designs (Coleman and Montgomery 1993). 

  
Figure 3-2. DOE Process for Building Test Designs 
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3.1.1 Plan Phase 

During the Plan phase, a working group consisting of systems SMEs and DOE/statistics experts 
works through steps 1–3: 

Step 1: Define the objective of the test and the various questions to be answered. 

In the case of M&S, the objective is to validate that the simulation provides realistic results 
and that the effect of factors on performance is indeed accurate. 

Step 2: Identify the responses. 

Determine which response variables should be used to help validate M&S results. These 
response variables must match some output of the M&S to allow some comparison. See 
“Responses” in Section 2.2.2 for some insight on selecting good response variables. 

Step 3: Define the factors and their level to be examined. 

Identify all potential controllable and uncontrollable factors that could influence the 
response, and then determine their data type and how best to control them for the sake of 
testing, establishing whether blocking or other randomization restrictions are involved. Select 
practical factor levels that can produce the maximum amount of information with the 
minimum number of runs, and identify unfeasible factor combinations (i.e., constraints and 
disallowed combinations). 

3.1.2 Design Phase 

During the Design phase, the DOE expert takes the information provided up to this point and 
develops a test design that balances test risk (i.e., power and confidence, see below) with test 
resources. 

Step 4: Choose an experiment design that fits the problem. 

Choosing the right test design depends on the objective of the experiment. Table 3-1 shows 
common objectives for physical experiments that will be used to verify or validate M&S. The 
table also lists recommended test designs based on the objective. For more information on 
these test designs, see the book Design and Analysis of Experiments (Montgomery 2013) and 
the MITRE Technical Report, “Modern Test Design and Analysis Playbook” (Cortes and 
Ortiz 2020). 
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Table 3-1. Recommended Experiment Designs for Common Test Objectives 

Objective Description Recommended 
Experimental Designs 

Screening Used to quickly identify the most 
influential factors on the response(s). 

• Placket-Burman 
• Fractional Factorial 
• Definitive Screening 

Characterization Used to help get accurate estimates of 
the effect that factors and their 
interactions have on the response(s). 
Can also be used to build a statistical 
model for prediction. 

• Factorial 
• Response Surface 
• Optimal 

Optimization Used to build a statistical model for 
prediction. This statistical model is then 
used to find an optimal solution. 

• Response Surface 
• Optimal 

 

Once the appropriate experimental design approach has been chosen, the test design must be 
properly sized to achieve an acceptable level of rigor. Properly sizing the test design depends on 
balancing multiple aspects—confidence, power, signal-to-noise estimate, and the number of 
replications of the experimental design; see Figure 3-3. 

  
Figure 3-3. Test Design Trade-Off Diagram 

Confidence (1 – α) is the probability of correctly determining that a factor does not influence the 
response. The level of confidence is chosen based on the level of acceptable risk in conjunction 
with the other test design trade-offs. Higher levels of confidence may be a better choice in some 
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situations, for example in a characterization test for a critical system function that will be used 
for model validation. A PM will need to work with testers to identify the confidence level that 
balances risk with cost and schedule. 

Experimental design refers to the chosen data points or the matrix of experimental runs that will 
be executed and includes the number of replications for each run. The experimental design 
considers the desired model terms (e.g., main effects, two-factor interactions (2FIs)) to be 
estimated and any potential constraints in factor space that cannot be examined. 

Signal-to-noise estimate is the ratio of the change in each response variable (δ) that it is 
important to detect divided by the estimate of the experimental error (σ) for each response 
variable. δ represents the smallest operationally meaningful difference in outcomes that the study 
should be able to detect. Choosing δ requires considering the practical effects that need to be 
observed to change the judgment or assessment of the system under study. For example, a 
missile might be considered an improvement over a previous variant only if its miss distance is at 
least 5 meters less on average than the previous variant’s miss distance; a decrease of 1 meter, in 
comparison, is not considered important, so δ = 5. σ is the natural variation in the response, a 
property of the system under study and not under control of the testers. (It may even be 
determined automatically by the distribution of the response variable.) For example, a missile’s 
miss distance may have a standard deviation of 10 meters. Some of the quantities of interest, 
such as the natural variation in performance or baseline performance, may need to be estimated 
from historical data, similar test events’ dry runs, repeatability studies, experience, or arguing 
from first principles. The signal-to-noise ratio (SNR), δ/σ, may be an input to statistical software 
for computing power; however, this ratio should be derived by considering δ and σ separately, 
considering what the behavior of the system could be and what operationally meaningful 
changes in behavior the test should detect (in the example above, the SNR is 0.5). Furthermore, 
planning analysis and documents should discuss δ and σ separately to ground test planning in 
terms of operationally meaningful performance metrics. 

It is important to distinguish between statistical significance and practical significance in model 
validation. For example, a hypothesis test may find that differences between the model and 
referent are statistically significant, but those differences are so small that they have no practical 
implications for system performance. In this case, the model may still be considered valid for its 
intended use. The bigger the sample sizes of the model and referent, the easier it is to determine 
whether any differences are statistically significant. Therefore, in addition to considering the 
signal-to-noise estimate, a program should also consider what difference is of practical 
consequence, such as with acceptability/accreditation criteria, and tests should be sized to have 
high power to find differences of that size. 
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Power (1 – β) is the probability of not committing a Type II error or the probability of correctly 
determining that a factor influences the response. Power is calculated after the other aspects have 
been determined. Higher-power designs mean lower risk, but time and resource constraints may 
mean that lesser-power designs are used, with commensurate increase in the risk of reaching 
incorrect conclusions regarding system performance. 

Once these considerations have been determined, numerous statistical programming packages 
(e.g., R, JMP, Python) are available to help determine the appropriate test design matrix. 

3.1.3 Test Phase 

During the Test phase, the experimental plan is implemented, and data is collected. Standard test 
execution protocols are employed to ensure the integrity of the data. 

Step 5: Develop the test design execution strategy. 

Develop a plan to address the uncontrollable and undesirable factors that can influence the 
results and lead to an invalid conclusion. Replication, randomization, and blocking 
approaches are employed. 

3.1.4 Analyze Phase 

During the Analyze phase, prediction models are created to estimate the system’s performance 
capabilities and associated uncertainties and to explain what factors are important (e.g., 
statistically impact performance) and which are not. 

Step 6: Analyze the results. 

Use statistical methods (e.g., analysis of variance (ANOVA), regression; see Section 4) to 
identify and estimate the effects of significant factors on performance and to answer an array 
of questions about the system under test and the M&S performance. 

Step 7: Formulate valid conclusions. 

In terms of the test objectives and questions defined in the Plan phase, report on the results 
and draw insights and implications for further research from the analysis. 

3.1.5 DOE Process Example 

To further illustrate the DOE process, consider the following survivability testing example of an 
infrared (IR) countermeasure (CM) system. Rotary-wing aircraft are vulnerable targets for IR 
missiles. To defeat incoming IR missiles, an aircraft will deploy flares that drop away from itself, 
providing a more attractive target for the incoming missile and diverting the missile away from 
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the aircraft. Although flares are effective, they can be deployed only once during a mission. To 
address this limitation, a nonexpendable solution and IR CM system have been developed. The 
CM receives a cue from the missile warning system (MWS) and then tracks and acquires the 
incoming missile by directing laser energy onto the missile, thus causing it to miss the aircraft. 

Figure 3-4 shows a notional IPO diagram potentially based on participants from a DOE working 
group. 

  
Figure 3-4. Survivability Testing Example of an Infrared Countermeasure System 

Assuming that the experiment requires two levels for Target Range, Target Altitude, Ozone, and 
Target, and three levels for Threat, 162 runs would be required to consider all possible 
combinations. However, using DOE methods and balancing power and confidence number 
reduces the total number of runs to approximately 34 if 80 percent power is desired for all main 
effects and first-order interactions (i.e., interactions between the main effects); see Figure 3-5. 
Similarly, confidence over 90 percent for all terms can be achieved with only 38 total runs3. This 
shows the strength of statistical test design: The program can not only reduce the total number of 
tests needed to characterize the system but also quantify the risks associated with that reduction. 

 
3 These calculations are based on effect size that is double the standard deviation (noise). The reasonableness of the 
effect size assumed is part of the iterative V&V process. 
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Note: The JEDIS tool used here is available at the IDA Test Science Website (https://testscience.org). 

Figure 3-5. Power Calculations for Model Terms (Main Effects and All First-Order Interactions) 
Versus the Number of Runs for the Test Design 

 

As shown in Figure 3-6, based on the 34-run test design, analysis can identify what factors and 
interactions are most important (Figure 3-6a), build a predictive model based on these significant 
factors (Figure 3-6b), create a response surface that describes performance across the factor 
space (Figure 3-6c), and then use this model to identify areas of concern via contour plots 
(Figure 3-6d). This type of analysis aids in comparing simulated results with real-world 
observations obtained via DOE. Discrepancies between simulated and experimental data may 
highlight areas for model refinement or improvement. 

https://testscience.org/
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(a) (b) 

  
(c) (d) 

Figure 3-6. Notional Example Analysis from the Results of Using a Designed Experiment 

3.1.6 Useful Software and Resources 

Common software for constructing designed experiments for physical systems includes JMP 
(licensed software), Design-Expert (licensed software), and R (free programming language). 
Some commonly used DOE R packages are skpr, AlgDesign, and FrF2, but there are many more. 
A comprehensive list can be found on the CRAN Task View: DOE and Analysis of 
Experimental Data Website. 

3.2 Design of Computer Experiments 

Computer experiments are a class of designs that were developed to efficiently cover a large 
input space for computer simulations with deterministic (or nearly deterministic) outcomes (e.g., 
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they produce the same response for a given set of inputs). Test designs for VV&A of 
deterministic systems can capitalize on the deterministic nature of the models using highly 
efficient computer experiments that sparsely cover the space. 

M&S is often quick to run, especially compared with the time it would take to run a live 
experiment. This relatively quick runtime can allow for many more runs to be performed than is 
typically seen in live test designs. M&S can also feature a complex response surface, for 
instance, nonlinear response curves due to complex physical phenomena that are not amenable to 
linear modeling of the M&S responses. 

These properties of M&S lead to a few common characteristics of designs for computer 
experiments used to accomplish M&S VV&A. First, deterministic responses mean no replication 
of runs is needed, unlike designs for physical experiments. Instead, designs for computer 
experiments focus on covering the entire factor space of the M&S to obtain responses that allow 
nonlinear response surfaces to be fully characterized. For this reason, designs for computer 
experiments are often called space-filling designs. 

Space-filling designs do not replicate any points, but they do try to avoid replication of responses 
should some factors prove to not influence the response. In other words, projecting the design 
into a smaller factor space should yield a design that also does not contain response replicates. 
Figure 3-7 pictures two possible designs that both fill the space; however, Design 1 contains 
replicates when projected, meaning it could prove to be a waste of resources if one factor does 
not influence the response, whereas Design 2 still contains no replicates upon projection. 
Designs such as Design 2 are preferred for computer experiments. 

  
Figure 3-7. Projection of Space-Filling Designs 
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3.2.1 Purpose of Space-Filling Designs in VV&A 

Space-filling designs should be used with specific analysis techniques in mind to satisfy 
specified goals of VV&A. These techniques are discussed in Section 4 and could include UQ, 
metamodel building, and sensitivity analysis. These analysis methods could meet a variety of 
objectives, such as to investigate the effects of a multitude of variables, to characterize system 
performance, or to compare model and referent data. 

3.2.2 Space-Filling Designs 

Many different methods exist for constructing space-filling designs. The following subsections 
present a subset of possible design types. The designs presented have good space-filling 
properties and are likely best suited for VV&A. The trade-offs between these designs will be 
discussed. 

3.2.2.1 Maximin Designs 

Maximin designs aim to maximize the minimum distance between any two points in the design. 
Figure 3-8 shows an example of a maximin design with two design factors. Maximin designs are 
also known as sphere-packing designs because they effectively fill the space with as many 
spheres as possible in an optimal arrangement, with design points placed at the center of each 
sphere. Physical examples of sphere packing include optimally filling a baking sheet with 
cookies or filling a bucket with golf balls. 

 
Figure 3-8. Maximin Design 

Maximin designs are ideal for spreading out points as much as possible, and they cover the edges 
and corners of the space more than alternative designs. However, as seen in Figure 3-8, maximin 
designs can tend to follow a more ordered structure, where design points cluster together when 
projected down to a smaller set of factors. This tendency makes maximin designs less ideal when 
it is likely that some factors may not have an effect. 
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3.2.2.2 Latin Hypercube Designs 

Latin hypercube (LH) designs are constructed to ensure each factor individually is well covered, 
with even spacing between factor levels. Figure 3-9 shows two different LH designs with 10 
points. To construct a design with 10 points, a grid is created with 10 rows and 10 columns. Then 
points are assigned to grid cells so that each row and each column contain exactly one point. 
Within each cell, the design point may be centered, placed at random, or placed at an optimized 
location (Cioppa and Lucas 2007). 

  
Figure 3-9. Latin Hypercube Designs: (a) Maximin Optimized and (b) Highly Correlated Design 

Many possible designs satisfy the basic properties of an LH design, but not all are considered to 
have good space-filling properties. For example, in Figure 3-9, design (b) has one design point in 
each row and each column, but it is missing large areas of the design space, and the factors are 
highly correlated, meaning the design only tends to test high Factor A values when Factor B is 
also high. Therefore, instead of randomly generating a single LH design, it is advantageous to 
adopt some optimality criterion—for example, maximin—to generate a design that satisfies LH 
properties and has generally good space-filling properties (Damblin et al. 2013). Design (a) in 
Figure 3-9 uses a maximin criterion to choose design points, meaning points are placed as far 
apart from each other as possible while maintaining LH properties. 

3.2.2.3 Sliced Latin Hypercube Designs 

A major limitation of the maximin and LH designs discussed thus far is that they cannot be 
applied when the M&S contains categorical factors because categorical factors have no 
“distance” that can be calculated and cannot be subdivided into intervals. Sliced LH designs 
adapt the LH to accommodate categorical factors. Figure 3-10 shows an example of a sliced LH 
design with three different levels of a categorical factor (green circle, orange triangle, and purple 
square). The design is created such that each categorical “slice” is an LH design, and all slices 
overlaid are also an LH design. Figure 3-10 shows a major 4x4 grid, where each column and row 
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contain one point for each categorical factor, and an overall 12x12 grid, where each column and 
row contain one point. This structure ensures that points will not be replicated should the 
categorical factor not impact the response. 

 
Source: Adapted from IDA Document NS D-21562 (Wojton et al. 2021) 

Figure 3-10. Sliced Latin Hypercube Design 

3.2.2.4 Fast Flexible Filling Designs 

Fast flexible filling (FFF) designs are another common design type chosen when categorical 
factors are present. The design is generated by randomly generating a large number of points, 
randomly distributed across factor levels, and then clustering those points into a number of 
clusters that equals the specified number of runs. Typically, design points are placed at the 
centroid of each cluster. Figure 3-11 shows an FFF design with nine points generated by 
clustering many points in a two-factor continuous space. 

 
Source: Adapted from IDA Document NS D-21562 (Wojton et al. 2021) 

Figure 3-11. Fast Flexible Filling Design Generated from Clustering 

When categorical factors are present, design points are balanced across the total number of 
combinations of categorical factor levels (see Fast Flexible Filling Design Details on the JMP 
Statistical Discovery Website). Another advantage of FFF designs is that they can be constructed 
when there are constraints on which factor levels or combinations can contain design points. For 
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example, if designing a test for a system with a concept of operations that specifies that the 
system will not be used at high speeds and low altitudes, a constraint (e.g., linear inequality) can 
be defined so that no design points will be created for the disallowed combinations of conditions. 

3.2.2.5 MaxPro Designs 

Space-filling designs may optimize some mathematical function defining what a “good” space-
filling design should do. The minimum distance between points in the design (optimized by 
maximin designs, which maximize this minimum distance) is a simple example of such a 
mathematical criterion, and the IDA Document, “Space Filling Designs for Modeling & 
Simulation Validation” (Wojton et al. 2021), includes many such mathematical criteria that a 
design may optimize. The MaxPro (meaning “maximum projection”) criterion function 
encourages spreading out points just as the minimum distance between points does, but it also 
rewards designs that retain good spread between points even if factors were removed; the 
minimum distance between design points lacks this feature. Additionally, the criterion handles 
categorical factors well. 

JMP provides FFF designs that optimize the MaxPro criterion. The IDA Paper, “Metamodeling 
Techniques for Verification and Validation of Modeling and Simulation Data” (Haman and 
Miller 2022), discusses how sliced LH designs can use the MaxPro criterion for moderate to 
large numbers of categorical factors. Analysts should consider using the MaxPro criterion 
because it generates designs for robustness against dropping factors, spreads points throughout 
the design space, and can handle the presence of many categorical factors. 

3.2.2.6 Design Comparison 

Table 3-2 summarizes the five design types discussed above. These designs have generally good 
properties, but many other designs can be used beyond those discussed in this guidebook. The 
IDA Document, “Space Filling Designs for Modeling & Simulation Validation” (Wojton et al. 
2021) discusses a wider array of design options and additional evaluation criteria. 

Table 3-2. Comparison of Five Space-Filling Design Types 

Design Type Description 
Handles 

Categorical 
Factors? 

Handles Design 
Region 

Constraints? 

Maximin Maximizes distance between pairs of points. No No 

Latin Hypercube 
(Maximin) 

Maximizes distance between points while 
maintaining even spacing between factor 
levels. 

No No 
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Design Type Description 
Handles 

Categorical 
Factors? 

Handles Design 
Region 

Constraints? 

Sliced Latin 
Hypercube 

Maintains even spacing between factor levels; 
contains no replicates projected across 
categorical factors. 

Yes No 

Fast Flexible 
Filling 

Design points are chosen by clustering many 
points generated across the design region. Yes Yes 

MaxPro Spreads points throughout the design space 
while also accounting for the possibility of 
dropping factors. 

Yes No 

3.2.3 Determining Sample Size 

Although M&S is typically not as resource restrained as physical experiments, it is important to 
carefully choose the sample size to ensure that enough information can be gained without 
wasting resources. The sample size should adequately cover the complexity of the space. Often 
the complexity of the space is not well understood, however, because of things like nested 
statements in software. A simple rule of thumb is that a space-filling design should contain at 
least 10 times the number of factors or variables being tested (Loeppky et al. 2009). This usually 
allows for sufficient modeling with techniques such as GP modeling (see Section 4.4.5). If the 
response surface is expected to be complex (the model outputs change rapidly with input 
changes), the number of points per factor should be increased to be able to model a more 
complex curve. If categorical factors are present, this rule of thumb may underestimate the 
number of runs required. Instead, choose a sample size of 10 times the number of continuous 
factors times the number of categorical combinations (Wojton et al. 2021). Sample size planning 
for stochastic M&S should include other methods for calculating sample size (including power 
analyses or sample size needed to obtain a desired margin of error). All these rules are 
conditional on correctly understanding the complexity of the space in continuous and categorical 
factors, so they should be thought of as a starting point that needs to be evaluated as part of the 
V&V process. 

3.2.4 Useful Software and Resources 

Software for constructing computer experiments includes JMP (licensed software) and R (free 
programming language). Of the designs discussed, JMP can build maximin (called sphere 
packing in JMP), maximin LH, and FFF designs. JMP also has built-in tools for modeling space-
filling designs. In R, several packages are available that can be used to generate space-filling 
designs: “MaxPro,” “lhs” (Latin hypercube samples), “maximin,” “SLHD” (sliced Latin 
hypercube designs), and “DiceDesign” (maximin and LH). Additional packages are available for 
modeling. 
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For a more detailed discussion of design construction, evaluation criteria, and additional design 
types, see the IDA Document, “Space Filling Designs for Modeling & Simulation Validation” 
(Wojton et al. 2021). 

3.3 Methods for Comparing Data from Physical Experiments and M&S 

As discussed in Section 2 of this guidebook, VV&A of M&S entails combining and comparing 
data from live testing (physical experiments) and M&S outputs to determine whether the M&S 
provides a representation of system behavior valid for the purposes of T&E. Statistically based 
methods of design and analysis, as described previously in Section 3, exist for determining the 
M&S outputs needed (e.g., the space-filling designs described in Section 3.2.2), determining the 
live test data needed (e.g., DOE, Section 3.1), and analyzing whether the differences between the 
two sets of data are acceptable. This section of the guidebook elaborates on several steps in the 
overall nine-step approach to VV&A cited in Section 2.1 (Wojton et al. 2019) and the seven-step 
DOE process (Section 3.1) to illustrate how data from live testing and M&S can be combined 
and compared. It should also be noted that in addition to comparisons with live test data, M&S 
validation can and should use information from other referents for comparison, as discussed in 
Section 4 of this guidebook. 

Identify response variables. These are the outputs of the M&S and results of live testing of 
interest for assessing the behavior of the model and performance of the system. In this case, the 
chosen measures should be sufficient to satisfy both purposes (assessing model behavior and 
assessing system performance), as well as sufficient to provide the basis for comparing live test 
results and M&S outputs. There will likely be overlap and uniqueness between and among the 
two sets of responses. Subject matter expertise is used to select the responses. 

Determine the factors that will affect the response variables. These are the conditions under 
which the system will be used (such as threat characteristics, weather) that will affect its 
performance and will be present in live testing, as well as the inputs that will affect the behavior 
of M&S outputs. The factors chosen should, again, be sufficient for both purposes (effects on 
performance obtained during live testing and model outputs). There will be overlaps and unique 
entries among and between the two sets of factors (e.g., both the results of live testing and M&S 
outputs will be affected by threat characteristics). Subject matter expertise is used to select the 
factors. 

Determine the acceptability criteria. These are the differences between each response variable 
common to the live testing and M&S outputs that are acceptable for using the M&S to evaluate 
the system’s performance (e.g., using the M&S results to conclude that the system’s performance 
is inadequate). These criteria can be response specific and will be determined using subject 
matter expertise, performance of other analogous systems, and outputs of other M&S. 
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Design the M&S experiment. Depending on the level of randomness in the model, as shown in 
Table 3-3, use the methods described in Sections 3.1 or 3.2 to design the M&S experiment to 
cover the M&S factors and to generate test points that can be matched to live test data. 

Design the live test. Using the approach described in Section 3.1, design the live test to cover the 
live testing factors, ensuring that there are live test points that match outputs generated from the 
M&S experiment as much as is feasible. Use estimates of prediction variance and/or statistical 
power for a detectable difference consistent with the acceptability criteria to determine the 
sufficiency of the data to be obtained from live testing. 

Use statistical methods to determine whether differences between live test data and M&S outputs 
are acceptable. Use statistical methods and models, such as those described in Section 4 of this 
guidebook, to “estimate the uncertainty of each of the response variables as a function of the 
appropriate factors” (Wojton et al. 2019). When any uncertainty exceeds the acceptability 
criterion for a given response variable, apply subject matter expertise to judge whether the 
exceedance is significant for the intended use of the M&S. 

Given sufficient resources and time, the steps described above can be repeated iteratively until 
the desired model fidelity is achieved as M&S development and system development proceed, 
model complexity increases, and system complexity and maturity increase. 

An example of a hybrid design approach combining M&S experimental design with DOE for 
live testing along the lines of the approach discussed above is described in Chapter 4, Sections C 
and D of the IDA Handbook (Wojton et al. 2019). 

Table 3-3. Simulation Design Recommendations 

 Recommended Method by Validation Goal 

Level of Randomness Compare to Live Data Explore Model Space 

None 
(Deterministic) 

Hybrid Design Space Filling 

Low 
(e.g., physics-based with 

calibration factors) 
Classical Hybrid Design 

High 
(e.g., effects-based,  
human-in-the-loop) 

Classical with Replications Classical with Replications 

Source: IDA Handbook (Wojton et al. 2019) 
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4 Analysis 

Section 4 provides guidance on the application of statistical techniques to data analysis within 
the context of M&S for T&E. This section outlines best practices for analyzing M&S results, 
highlighting the role of statistical methods in validating models and ensuring their practical 
significance in T&E. It aims to equip testers, systems engineers, analysts, and PMs with the 
necessary tools to analyze M&S outputs effectively, focusing on VV&A processes and using 
statistical methods to communicate M&S results. By applying statistical techniques, stakeholders 
can quantify uncertainties, compare M&S results with live test data, and make informed 
decisions based on comprehensive data analysis. 

4.1 Exploratory Data Analysis 

Exploratory data analysis (EDA) is a data analysis philosophy used most often to discover new 
information about a data set. Whether it is a data set about which nothing is known or one to 
which a few other analysis methods have been applied, EDA is used to discover the unknown. 
The first step in performing EDA is to formulate a question that needs to be answered about the 
data: Are there patterns that are not obvious? Are patterns that are obvious not quite what they 
seem? 

It is important to think of EDA not as a technique or set of methods to use; it is a mindset, a way 
of thinking about data. Data analysis techniques such as regression and inferential statistics have 
prescribed inputs, processes, and outputs. EDA serves in contrast to these methods. There are no 
prescribed techniques, only those that analysts think might reveal information about what is not 
otherwise already known. EDA allows the analysts to let the data determine the appropriate 
techniques to utilize. Graphical representations are often employed in EDA as they are efficient 
to create and easy to interpret. Scatter plots, box plots, and histograms are only a few of the 
graphical analysis techniques that can shed light on data. 

Figure 4-1 is a simple example from the National Institute of Standards and Technology (NIST) 
Web-based Engineering Statistics Handbook (https://www.itl.nist.gov/div898/handbook/) that 
shows how EDA is used to interpret a set of data analyses. 

https://www.itl.nist.gov/div898/handbook/
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Source: NIST Engineering Statistics Handbook 

Figure 4-1. Anscombe’s Quartet: A Set of Four Data Sets with Identical 
Means, Variance, R-Squared, Correlations, and Linear Regression Lines 

Each of the data sets indicates a unique behavior between the two variables. If any of the 
possible data points were filtered, the actual behavior of the entire data set might not be 
observed. 

EDA allows outliers to be identified, such as in Data Sets 3 and 4, which should be investigated 
further. If the outliers are caused by data collection or data entry errors, it may be possible to 
repeat the collection or fix the entries; if neither option is feasible, then the data should be 
removed before proceeding with further analysis. However, if the outliers are valid data, then 
they may indicate real phenomena that should be modeled. EDA allows informed decisions to be 
made about whether to exclude data before proceeding with modeling. Note that even when 
outliers are removed from a modeling analysis, they are still part of the data set and should be 
included in the overall analysis in support of the V&V. 

The NIST Engineering Statistics Handbook further recommends the following basic set of four 
techniques to conduct a new EDA. Although these techniques are recommended, they are not 
mandatory. Simplified examples of how to use these techniques are provided in subsequent 
subsections of this guidebook. 

• Run-sequence plot 

• Lag plot 

• Histogram 

• Normal probability plot 
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This set of four plots provides a substantial amount of information pertaining to a data set, able 
to cover a wide variety of questions and discovery. According to NIST, these four plots are 
excellent for testing the four assumptions of randomness, fixed distribution, fixed location, and 
fixed variation. For example, if the run-sequence plot has a vertical spread that is the same over 
the entire plot, then the fixed variation assumption holds. If the lag plot is structureless, then the 
randomness assumption holds. If the histogram is bell-shaped, the underlying distribution is 
symmetric. If the normal probability plot is linear, then the underlying distribution is 
approximately normal. NIST provides a detailed discussion for the proper understanding of data 
when testing indicates that any of the four assumptions are invalid. 

As mentioned earlier in this section, the first step in EDA is to formulate the set of questions that 
need to be answered. Once the set of questions is chosen, they must be ranked by order of 
importance. Some analytic techniques are meant for specific purposes, whereas others are best 
suited to answer many general questions. The following sections of the NIST Engineering 
Statistics Handbook provide additional information: Section 1.3.3. provides a variety of 
graphical analysis methods, with descriptions as well as instructions for their use; Section 1.3.5. 
provides quantitative analysis methods; Section 1.3.6. explains probability distribution methods; 
and Section 1.4.2. provides in-depth examples about how these various techniques can be used 
with EDA in mind. 

4.1.1 Run-Sequence Plot 

A run-sequence plot is a plot of the data against the order it was observed. The run-sequence plot 
can be constructed via a scatter plot, with the order of the observations intact, as shown in 
Figure 4-2. 

  
Figure 4-2. Run-Sequence Plot Showing an Overall Trend in Observations 

Along With Two Outliers 
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The plot shows a gradual decline in the observations, with two seeming outliers. These two 
points are similar in that they are roughly the same number and somewhat follow the same 
declining behavior as the rest of the data set. Based on this run-sequence plot, it might be 
decided that these two points are not outliers but instead phenomena that should be investigated. 

4.1.2 Lag Plot 

Similar to a run-sequence plot, a lag plot examines the structure of data. In a lag plot, the 
observations are plotted on the y-axis against the indexed observations based on the chosen 
amount of lag. For example, the data set in Table 4-1 pairs each observation with the next 
observation in the set. 

Table 4-1. Data Set for Lag Plot Example 

Data 1.052 1.054 1.055 1.054 1.055 1.076 1.052 1.051 1.051 1.046 1.045 1.042 1.071 1.035 1.03 1.028 1.027 

-1 Lag 1.054 1.055 1.054 1.055 1.076 1.052 1.051 1.051 1.046 1.045 1.042 1.071 1.035 1.03 1.028 1.027 0 

 

With this data set, a scatter plot can be created to show a unique perspective; see Figure 4-3. 

  
Figure 4-3. Lag Plot of Notional Data Showing a Linear Relationship, Indicating Autocorrelation 

Lag plots show autocorrelation. If the data were truly random, a high variability, or scatter, in the 
lag plot would be expected. What is seen in the example is more of a linear relationship that 
icates a low amount of randomness. 
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4.1.3 Histogram 

The purpose of the histogram is to analyze the distribution of a data set. The example in 
Figure 4-4 is a data set for observed transmission times of a network. Plotting the observations 
shows that most of the transmissions are arriving at or near the theoretical value of 10.35 
seconds. There is moderate variability between 10.33 and 10.37 seconds, with a seeming outlier 
at 10.4 seconds. Based on an understanding of the different types of distributions, this data set 
could be classified as normally distributed. There are many other studied types of distributions, 
including binomial, uniform, Poisson, and Weibull. The shape of the distribution can provide a 
wealth of information, including potential probability and cumulative distribution functions 
(CDFs). 

  
Figure 4-4: Histogram Showing Distribution of Notional Data 

4.1.4 Normal Probability Plot 

The normal probability plot is a technique used to determine whether a data set is normally 
distributed. There are many different methods to create a normal probability plot; the example 
below is one method. Taking the network transmission times from the previous example, the first 
step is to reorder the raw values in ascending order, as shown in the second column of Table 4-2. 
Then each value is ranked (the Number column); the cumulative probability of each value is 
calculated; and the corresponding z-value for each probability is determined. The cumulative 
probabilities are calculated as (i – 0.5)/n, where i is the rank of the value (Number column) and n 
is the total number of observations (17 in this case). For this example, the z-values were 
determined via the NORMSINV function within Microsoft Excel, which was applied to the 
Cumulative Probability column. 
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Table 4-2. Data Table for Normal Probability Plot Example 

Transmission Time Ordered Number Cumulative Probability Z-Value 

10.31 10.31 1 0.029411765 -1.88950996 

10.35 10.33 2 0.088235294 -1.35170224 

10.34 10.33 3 0.147058824 -1.049131398 

10.35 10.34 4 0.205882353 -0.820792088 

10.4 10.34 5 0.264705882 -0.628904218 

10.35 10.35 6 0.323529412 -0.457851931 

10.33 10.35 7 0.382352941 -0.29930691 

10.34 10.35 8 0.441176471 -0.14798711 

10.35 10.35 9 0.5 0 

10.35 10.35 10 0.558823529 0.14798711 

10.36 10.35 11 0.617647059 0.29930691 

10.37 10.36 12 0.676470588 0.457851931 

10.36 10.36 13 0.735294118 0.628904218 

10.35 10.36 14 0.794117647 0.820792088 

10.36 10.37 15 0.852941176 1.049131398 

10.33 10.37 16 0.911764706 1.35170224 

10.37 10.4 17 0.970588235 1.88950996 

With the data table complete, the results can be plotted on a scatter plot; see Figure 4-5. The 
x-axis should be the set of ordered data values (column 2 in this example) and the y-axis the 
z-values. A trend line is added to better expose the desired effect. Ideally, this plot would show a 
perfect alignment of values along the trendline, or a perfect linear relationship. With only 17 
values, this becomes a bit difficult, but the linear behavior can be observed. Additional data 
points would smooth out the appearance. 
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Figure 4-5. Normal Probability Plot 

This method can be applied to other types of distributions as well. No matter the type of 
distribution, the plot shows the linearity of the ordered values to the statistical expectation. 

4.2 Statistical Methods for Comparing Physical and M&S Data 

Statistical methods provide a rigorous framework for comparing data from physical experiments 
with outputs from simulations. These methods enable analysts to assess the validity and 
reliability of models, ensuring that they accurately represent real-world scenarios. By quantifying 
differences and uncertainties, statistical techniques help in identifying discrepancies and guiding 
improvements in model fidelity. This process not only enhances the credibility of M&S but also 
supports informed decision making, ultimately leading to more effective and efficient system 
development and evaluation. 

4.2.1 Basics of Hypothesis Testing 

Hypothesis tests can be used to determine whether the data support a hypothesis, for example, 
“the model and the referent data do not have the same mean.” When creating the hypothesis, a 
program should consider what difference is of practical consequence. 

Hypothesis tests always have at least two hypotheses: the null hypothesis and an alternative 
hypothesis. The specific null/alternative hypotheses will vary slightly depending on the test 
applied. When applied to model validation, however, the hypotheses typically follow the 
structure below. 
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Null Hypothesis (𝐻𝐻0): The model and the referent agree. 

Alternative Hypothesis (𝐻𝐻1): The model and the referent disagree. 

The null hypothesis is what is assumed to be true, and the alternative hypothesis can be 
supported by collecting and analyzing data. The outcome of a hypothesis test is to either reject 
the null hypothesis and conclude that the alternative hypothesis is true or fail to reject the null 
hypothesis due to lack of evidence. The decision of whether to reject the null is based on the 
comparison of a test statistic calculated from data to a critical value based on the significance 
level (𝛼𝛼), or equivalently of the calculated p-value to the significance level. The p-value is the 
probability of obtaining data at least as extreme as the observed data, given the null hypothesis is 
true, and the significance level is the acceptable rate of rejecting the null hypothesis if it were 
true (commonly set to 0.05). If the p-value is smaller than the significance level, the result of the 
hypothesis test is statistically significant. 

If the model and the referent agree, the model can be considered valid, and if the model and 
referent disagree, the model cannot be considered valid. A key thing to highlight is that using the 
hypotheses above, it is impossible to prove that the model and referent agree; this is because the 
null hypothesis is assumed to be true. Rather, the conclusion would be that the model and 
referent data do not indicate evidence of disagreement. The hypotheses above can be used to 
prove that the model and referent disagree if disagreement is indicated by the data. 

Some types of hypothesis tests swap the null and alternative hypotheses listed above, enabling 
the test to prove agreement between a model and referent. These are called equivalence tests and 
are described further in the STAT Center of Excellence (COE) Report, “Equivalence Testing” 
(Ramert and Westphal 2020). 

4.2.2 Two-Sample T-Test 

The two-sample t-test is a simple hypothesis test that can be used to determine whether a 
statistically significant difference exists between the model mean, 𝜇𝜇m, and referent mean, 𝜇𝜇r. 
This test assumes that the data drawn from the model and referent are normally distributed. The 
hypotheses are below. This setup is commonly called a two-sided hypothesis test because the 
model mean could be higher or lower than the referent mean, indicating that the model and 
referent disagree. 

Null Hypothesis (𝐻𝐻0): 𝜇𝜇m = 𝜇𝜇r 

Alternative Hypothesis (𝐻𝐻1):𝜇𝜇m ≠ 𝜇𝜇r 
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Evidence for disagreement between the model and referent means is captured by the test statistic 
𝑇𝑇 given in Equation (4-1), where �̅�𝑥m is the model sample mean, �̅�𝑥r is the referent sample mean, 
𝑠𝑠m2  is the model sample variance, 𝑠𝑠r2 is the referent sample variance, 𝑁𝑁m is the model sample 
size, and 𝑁𝑁r is the referent sample size. 

 𝑇𝑇 =
�̅�𝑥m − �̅�𝑥r

�𝑠𝑠m2 /𝑁𝑁m + 𝑠𝑠r2/𝑁𝑁r
 (4-1) 

To determine whether the evidence is sufficient to prove the alternative hypothesis at the chosen 
significance level 𝛼𝛼, a critical value must be calculated. In this case, the critical value is 
computed using the Student’s t-distribution, which gives the probability of observing different 
test statistics assuming that the model and referent have the same mean. If there is a low 
probability (a low p-value) of observing a test statistic as extreme or more extreme than the one 
calculated using Equation (4-1), there is sufficient evidence to conclude that the model and 
referent means are different. The critical value, 𝑡𝑡1−𝛼𝛼/2,𝜈𝜈 , for a two-sided hypothesis test is 
calculated at a 1 − 𝛼𝛼/2 confidence level using software or lookup tables for a t-distribution with 
degrees of freedom 𝜈𝜈 given in Equation (4-2).  

 
𝜈𝜈 =

(𝑠𝑠m2 /𝑁𝑁m + 𝑠𝑠r2/𝑁𝑁r)2

(𝑠𝑠m2 /𝑁𝑁m)2/(𝑁𝑁𝑚𝑚 − 1) + (𝑠𝑠r2/𝑁𝑁r)2/(𝑁𝑁r − 1)
 (4-2) 

If |𝑇𝑇| > 𝑡𝑡1−𝛼𝛼/2,𝜈𝜈, then there is sufficient evidence to reject the null hypothesis, resulting in the 
conclusion that the model and referent means are not the same and the model is not valid. 
Otherwise, the conclusion would be that the data do not indicate evidence of disagreement 
between the means. The t-test can be implemented in R using the t.test function. 

The disadvantage of a t-test is that it only accounts for differences in the mean rather than 
differences between distributions in general. Additionally, it only applies to a single set of factor 
conditions and cannot account for factor changes. Section 4.2.3 discusses the ANOVA 
hypothesis test, which accounts for multiple factors, and Section 4.2.4 discusses goodness-of-fit 
tests, which compare two distributions. 

4.2.3 Analysis of Variance 

ANOVA is a hypothesis test that underlies statistical regression. ANOVA can be used on a 
model or referent data alone when creating a linear regression model to understand which factors 
influence outputs. However, ANOVA can also be applied to a combined regression model built 
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from both model and referent data to find statistically significant differences between model and 
referent data across a range of factors. 

ANOVA requires several assumptions: independent observations, constant variance of error 
terms, and normally distributed error terms. For a discussion of checking model assumptions, see 
the STAT COE Report, “Model Building Process Part 1: Checking Model Assumptions V 1.1” 
(Burke 2017). Equation (4-3) gives the general form for a linear regression model with main 
effects (single factor effects) and interaction effects between factors, where 𝑦𝑦 is the response, 𝛽𝛽0 
is intercept, 𝑘𝑘 is the number of factors, 𝛽𝛽𝑗𝑗 is the main effect model parameter for the 𝑗𝑗th factor, 
𝛽𝛽𝑖𝑖𝑗𝑗 is the model parameter for the interaction between factor 𝑖𝑖 and factor 𝑗𝑗, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖th 
independent variables or factors, and 𝜀𝜀 represents the unknown error. Linear regression models 
are flexible and may also contain quadratic terms (e.g., 𝑥𝑥12 ), or even higher-order terms (e.g., 
𝑥𝑥12𝑥𝑥2). 

 
𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗

𝑘𝑘

𝑗𝑗=1

+ ��𝛽𝛽𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
𝑖𝑖<𝑗𝑗

𝑘𝑘

𝑗𝑗=1

+ 𝜀𝜀 (4-3) 

For model validation, in addition to operationally relevant factors, the data source (model/ 
referent) can be included as a factor in the model, as well as interactions with the source factor. 
For each term included in the model, the null hypothesis is that the term does not have an effect 
on the response, and the alternative is that the term does have an effect on the response. 

To determine statistical significance, an F statistic is calculated from the ratio of variation 
between groups to the variation within groups. This is illustrated conceptually for a single factor 
case in Figure 4-6. The figure shows notional data observed for radar detection range from two 
sources, a model and referent, for two different cases, with boxplots showing the distributions of 
each data set. In the left graph, the ratio of variation between the model and referent groups to 
the variation within the groups is small, and there is substantial overlap between the two groups, 
so the evidence does not indicate a significant difference. In the right graph, however, the ratio of 
variation between the model and referent groups to the variation within the groups is large, and 
the two groups are well separated, so the source term is considered statistically significant. 
Therefore, the model could be considered valid in the left case but not in the right case. 



4. Analysis 

MODELING AND SIMULATION FOR T&E GUIDEBOOK 
44 

  
Figure 4-6. ANOVA Illustration for a Single Factor 

The concept shown in Figure 4-6 can be extended for multiple model terms, allowing the 
difference between the model and referent to be assessed across a range of factors. For the 
mathematical details for performing ANOVA, see the STAT COE Report, “Understanding 
Analysis of Variance: Best Practice” (Natoli 2017). 

The statistical software JMP has easy-to-use tools for performing regression and ANOVA. The R 
programming language can also be used. 

A key consideration when performing regression/ANOVA is the correlation of design factors. To 
correctly attribute an effect to a factor, factors should have zero or low correlation. Using 
designed experiments (see Section 3.1) is an effective way to reduce correlation between factors. 
Correlation can also be introduced when combining unbalanced data sets from a model and 
referents. Section 4.4.1 discusses strategies for combating issues with unbalanced data sets. 

4.2.4 Goodness-of-Fit Tests 

Goodness-of-fit tests compare two samples to each other to determine whether they came from 
the same distribution. When applied to model validation, goodness-of-fit tests compare model 
data to referent data to determine whether they have the same distribution, establishing evidence 
that the model agrees with referent data. Unlike ANOVA, goodness-of-fit tests typically apply to 
a unique combination of factors (or when no factors are present) rather than applying over a 
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range of many factors. Section 4.2.5 discusses how these analysis techniques can be extended 
across multiple factor settings. 

4.2.4.1 Nonparametric Kolmogorov-Smirnov Test 

The nonparametric or two-sample Kolmogorov-Smirnov (KS) test can be used to compare model 
and referent data with continuous responses at a unique combination of factors to determine 
whether the two data sets come from the same or different underlying, unknown distributions. 
The model and referent data are compared using their empirical CDF. Figure 4-7 shows 
examples of CDFs for simulated and referent (measured) data. The empirical CDF plots data 
points in a sample against their percentile. For example, 50 percent of the sample data is above 
or below the median value of a sample, indicated by where the CDFs reach 0.5 cumulative 
probability in Figure 4-7. Typically, simulated data sets have a higher number of samples due to 
the relative ease and speed of simulating data. This results in the smoother CDF seen for the 
simulated data shown in Figure 4-7. 

  
Source: IDA Handbook (Wojton et al. 2019) 

Figure 4-7. Cumulative Probability Functions for Measured and Simulated Data 

Figure 4-7 visualizes how the test statistic D is calculated, which is used to determine whether 
there is sufficient evidence that the model and referent disagree. The formula for calculating 
𝐷𝐷𝑚𝑚,𝑛𝑛 is given in Equation (4-4), where 𝑚𝑚 is the number of model samples, 𝑛𝑛 is the number of 
referent samples, 𝐹𝐹model(𝑥𝑥) is the CDF of the model, 𝐹𝐹referent(𝑥𝑥) is the CDF of the referent, and 
𝑥𝑥 is the response being compared. This equation simply states that D is equal to the maximum 
difference between the model and referent CDFs for any value of 𝑥𝑥. 
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 𝐷𝐷𝑚𝑚,𝑛𝑛 = max
𝑥𝑥

|𝐹𝐹model(𝑥𝑥) − 𝐹𝐹referent(𝑥𝑥)| (4-4) 

The test statistic 𝐷𝐷𝑚𝑚,𝑛𝑛 is compared to a critical value 𝐷𝐷𝛼𝛼, where 𝛼𝛼 is the significance level. If 
𝐷𝐷𝑚𝑚,𝑛𝑛 >  𝐷𝐷𝛼𝛼, the difference between the model and referent is statistically significant, meaning 
the data indicate that there is sufficient evidence that the model and referent disagree, and the 
null hypothesis is rejected. Equation (4-5) gives the equation to calculate 𝐷𝐷𝛼𝛼 for large sample 
sizes, where the value of 𝑐𝑐(𝛼𝛼) is given by Table 4-3 for commonly chosen significance levels. 

 
𝐷𝐷𝛼𝛼 = 𝑐𝑐(𝛼𝛼)�

𝑚𝑚 + 𝑛𝑛
𝑚𝑚 ∗ 𝑛𝑛

 (4-5) 

Table 4-3. Values of 𝒄𝒄(𝜶𝜶) for Different Significance Levels 

𝛼𝛼 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 

𝑐𝑐(𝛼𝛼) 1.073 1.138 1.224 1.358 1.48 1.628 1.731 1.949 

The KS test is excellent for comparing entire continuous distributions rather than just two means 
(as in a t-test). However, the KS test can be used to demonstrate model validity only at a single 
input combination at a time and requires a higher number of data points in both model and 
referent data to establish the shape of their distributions. The KS test can be implemented in R 
using the ks.test function, which can be used to calculate the p-value (compared against the 
significance level to determine statistical significance). 

4.2.4.2 Fisher’s Exact Test 

Fisher’s exact test can be used to compare model and referent data that have a categorical 
response (e.g., pass/fail, hit/miss) at a unique combination of factors (or when no factors are 
present). Fisher’s exact test is similar to the chi-squared test but is preferred for smaller sample 
sizes, such as those often encountered in DoD. Model and referent data with a binary response 
can be summarized in a contingency table such as in Table 4-4. 
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Table 4-4. Example of a Contingency Table 

 Successes Failures Row Sums 

Model 𝑎𝑎 = 8 𝑏𝑏 = 14 𝑎𝑎 + 𝑏𝑏 = 22 

Referent 𝑐𝑐 = 1 𝑑𝑑 = 3 𝑐𝑐 + 𝑑𝑑 = 4 

Column Sums 𝑎𝑎 + 𝑐𝑐 = 9 𝑏𝑏 + 𝑑𝑑 = 17 𝑛𝑛 = 26 
Source: IDA Handbook (Wojton et al. 2019) 

Table 4-4 shows that the model and referent both had low but slightly different rates of success 
(8/14 = 0.37 for the model and 1/3 = 0.33 for the referent). Fisher’s exact test can be used to 
determine whether any calculated difference in the rate of success is statistically significant: in 
other words, if there is enough evidence that the model and referent distributions disagree. To 
perform the hypothesis test, assume that the model and referent are equally likely to succeed, 
then calculate the probability of observing the data or data more extreme conditional on the 
marginal totals in Table 4-4 (conditional on total success/failures and data counts for model and 
referent). If the probability is small, there is a low chance of obtaining the observed data, 
meaning it is unlikely that the model and referent have the same probability of success. This 
probability of the observed data is calculated using Equation (4-6), where a, b, c, d, and n are the 
counts drawn from Table 4-4, assuming fixed margins. 

 
𝑝𝑝 =

(𝑎𝑎 + 𝑏𝑏)! (𝑐𝑐 + 𝑑𝑑)! (𝑎𝑎 + 𝑐𝑐)! (𝑏𝑏 + 𝑑𝑑)!
𝑎𝑎! 𝑏𝑏! 𝑐𝑐!𝑑𝑑! 𝑛𝑛!

 (4-6) 

For Table 4-4, 𝑝𝑝 = 0.4094. However, to calculate the probability of observing the data or data 
more extreme, the conditional probability of observing other possible a, b, c, and d values that 
have the marginal totals must also be calculated, as shown below in the same arrangement as 
Table 4-4. 

9 13  7 15  6 16  5 17 

0 4  2 2  3 1  4 0 

𝑝𝑝 = 0.1592  𝑝𝑝 = 0.3275  𝑝𝑝 = 0.0955  𝑝𝑝 = 0.0084 

The probabilities calculated above indicate that the observed data (Table 4-4) are not improbable 
compared to other arrangements that would give the same marginal totals. To calculate the 
p-value for the two-sided significance test (to be compared to significance level 𝛼𝛼), all 
probabilities smaller than or equal to the probability calculated for the observed data are 
summed with Equation (4-6) (≤ 0.4094). For this example, the p-value equals 0.4094 +
 0.1592 +  0.3275 +  0.0955 + 0.0084 =  1. For a significant level of 𝛼𝛼 = 0.05, it can be 
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concluded that the difference between the model and referent is not statistically significant 
because 1 > 0.05, and therefore it can be concluded that the evidence does not indicate the 
model is invalid. 

Fisher’s exact test can be implemented in R using the fisher.test function. 

4.2.5 Fisher’s Combined Probability Test 

Fisher’s combined probability test is a “meta-analysis” technique that can be used to combine the 
results of several independent hypothesis tests with the same hypotheses. Fisher’s combined 
probability test can be used to combine results from tests such as the t-test, KS test, and Fisher’s 
exact test discussed in Sections 4.2.2, 4.2.4.1, and 4.2.4.2, respectively. For example, a 
goodness-of-fit test could be conducted individually for different unique factor combinations, 
then combined using a Fisher’s combined probability test to determine whether there is evidence 
of model and referent disagreement overall across the operational space. 

The test statistic 𝜒𝜒2𝑘𝑘2  for Fisher’s combined probability test can be calculated using 
Equation (4-7), where 𝑘𝑘 is the total number of hypothesis tests and 𝑝𝑝i is the p-value for the 𝑖𝑖th 
hypothesis test. 

 
𝜒𝜒2𝑘𝑘2 = −2� ln 𝑝𝑝𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (4-7) 

This test statistic follows a chi-squared distribution with 2𝑘𝑘 degrees of freedom, which can be 
used to calculate either the critical value for comparison to the test statistic or the p-value for the 
overall hypothesis test. 

If the overall p-value is small and indicates that the model and referent do not agree, investigate 
which conditions had small individual p-values. It is possible that the model predictions are 
invalid under some conditions rather than invalid across the entire space. Regression techniques 
are powerful for understanding these factor effects and should also be used when validating 
across an operational space. 

4.2.6 Summary of Statistical Analysis Methods for Comparing Physical and M&S Data 

The hypothesis tests most appropriate for analyzing the live test and M&S data are determined 
by the data and their characteristics as described in previous sections. Examples of appropriate 
hypothesis tests and other statistical methods include the following: 
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• The t-test (or log t-test for transforming skewed data) is used to determine whether the 
means of two sets of data (or transformed data) are statistically different/independent. 

• Fisher’s combined probability test is used to combine the results of multiple 
difference/independence tests associated with the same overall null hypothesis. 

• Fisher’s exact test is used to statistically analyze contingency tables comprising 
categorical data. 

• The nonparametric KS test is used to assess whether two sets of data arise from the same 
distribution. 

• Regression models are used to assess what factors affect responses, with the factors/terms 
in the model composing the sets of hypotheses. Lognormal regression is performed on the 
logarithm of skewed, nonnegative responses. 

• Emulation and prediction compare live test data as they become available to the 
prediction interval (PI) of a metamodel of the M&S (see Sections Error! Reference 
source not found. and Error! Reference source not found.). 

Furthermore, it may be necessary to apply several methods to fully understand and characterize 
any given set of data. “There is no one-size-fits-all solution” (Wojton et al. 2019). Table 4-5 
summarizes which analysis methods are appropriate based on the data characteristics and sample 
size. 
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Table 4-5. Statistical Analysis Methods According to Distribution of Responses 
and Amount of Live Test Data 

 
Source: IDA Handbook (Wojton et al. 2019) 

 

4.3 Methods for Uncertainty Quantification 

As stated in Section 2.2.1, there are generally two broad categories of uncertainty: statistical and 
knowledge (Wojton et al. 2019).4 Statistical uncertainty is due to inherently random effects; can 
be better characterized, but not reduced, by accumulating more samples (i.e., more replicates); 
and is generally characterized by a probability distribution. An example of statistical uncertainty 
is measurement error. In contrast, knowledge uncertainty is due to a lack of information and thus 
can be reduced by collecting data, which provides new information, but generally cannot be 

 
4 Aleatory and epistemic are commonly used terms for statistical and knowledge uncertainty, respectively. 
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characterized by a probability distribution.5 An example of knowledge uncertainty is the 
unknown performance capabilities of a foreign weapon system due to limited intelligence data. 

Intervals are a key way to quantify statistical uncertainty around an estimate, and different types 
of intervals quantify different kinds of uncertainty. Statistical intervals quantify statistical 
uncertainty, and there are several types of statistical intervals (Ortiz and Truett 2015): 

• A confidence interval6 (CI) is calculated from sample data, and it provides a range of 
values where the true population parameter likely resides. An example of a question that 
a CI can answer is “What is the expected performance of my system at a specific 
condition?” 

• A prediction interval (PI) is an estimated range of values in which future observations 
will fall at a specified level given what has already been observed. An example of a 
question that a PI can answer is “What is the predicted performance of my system at a 
specific condition?” PIs are wider than CIs but often more useful when using M&S to 
predict performance of the real-world system. 

• A tolerance interval (TI) is a range of values where X percent (specified by the user) of 
the population should fall. An example of a question that a TI can answer is “Will 
99 percent of my observations fall under the threshold specification at least 95 percent of 
the time?” Although TIs are not widely used in DoD T&E, they are arguably more 
appropriate than CIs for many requirements. 

In addition to choosing which of the three types of intervals is appropriate, a choice must also be 
made between a one-sided or two-sided interval. A one-sided interval provides either an upper or 
lower bound on the estimate, and it is appropriate when the quantity of interest must be either 
above or below a single threshold. A two-sided interval, on the other hand, brackets the estimate 
with both an upper and lower bound. 

There are many ways to calculate the intervals described above, and choosing the appropriate 
method depends on the characteristics of the data. Therefore, EDA (see Section 4.1) is a crucial 
prerequisite. For example, there are closed-form solutions for all three types of intervals for 
normally distributed data. Prediction and tolerance intervals, however, are highly sensitive to the 

 
5 Knowledge uncertainty is typically represented as an interval with no associated probability density function 
(PDF). However, it may be represented as a PDF that reflects the subject matter expert’s degree of belief (Cortes et 
al. 2021). Methods for eliciting subjective probability functions are outside the scope of this guidebook; an 
introduction to the topic can be found in the book Uncertainty: A Guide to Dealing with Uncertainty in Quantitative 
Risk and Policy Analysis (Morgan and Henrion 1990). 
6 The credible interval is the Bayesian counterpart to the frequentist confidence interval. For an introduction to 
Bayesian statistics, see the book Statistical Rethinking: A Bayesian Course with Examples in R and Stan (McElreath 
2020). 
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normality assumption. If the normality assumption is not satisfied, then it may be possible to 
transform the response such that the transformed response is normal. It is hard to interpret 
intervals, however, for transformed variables (Cortes and Ortiz 2020). Interactive tools for 
calculating CIs for variables that follow an exponential, binomial, or lognormal distribution can 
be found on the IDA Test Science Website (https://testscience.org/interactive-tools). 
Alternatively, distribution-free methods should be considered; see the book An Introduction to 
the Bootstrap (Efron and Tibshirani 1994) for more information on distribution-free methods. 

There are many sources of uncertainty in M&S, such as model inputs, simplifying model 
assumptions, and numerical errors (e.g., round-off error) (Roy and Oberkampf 2011). Thus, 
M&S can have both statistical and knowledge uncertainties. Instead of relying solely on point 
estimates (e.g., the average miss distance was 10 feet), decision makers should expect M&S 
V&V results and model predictions to also include information about the uncertainty around 
point estimates (e.g., the average miss distance was 10 feet with a 95 percent CI of [7 feet, 
13 feet]). Uncertainty intervals are a convenient way to quantitatively convey that information. 
See Section Error! Reference source not found. for more information about when to use 
different types of uncertainty intervals. 

Roy and Oberkampf (2011) developed a comprehensive framework for UQ in scientific 
computing, which is summarized in their article, “A Comprehensive Framework for Verification, 
Validation, and Uncertainty Quantification in Scientific Computing.” As shown in Figure 4-8, 
the first step in the UQ process is to assess sources of uncertainty. This entails identifying and 
quantifying all potential sources of uncertainty in the model. Each source of uncertainty should 
be categorized as statistical, knowledge, or mixed uncertainty. Then a mathematical structure can 
be assigned (e.g., probability function, interval), and numerical values can be determined for 
each source of uncertainty. Consider each of the following categories when identifying sources 
of uncertainty: 

• Model inputs: This category includes parameters used in the model and data from the 
description of the surroundings. Examples include model parameters, initial conditions, 
and boundary conditions. 

• Numerical approximation: Most scientific models use approximate numerical solutions. 
Examples include round-off error, discretization error, and convergence error. 

• Model form: This is due to approximate or imprecise representation of the underlying 
physical, biological, economic, or social processes (Smith 2013). Examples are problem 
dependent. 

The number of potential sources of uncertainty can be very large, especially for complex models. 
Inputs that have little to no uncertainty or that have little to no effect on the variability of all 

https://testscience.org/interactive-tools
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responses of interest may be treated as deterministic. This determination, however, must be 
justified and based on strong evidence such as a sensitivity analysis. 

  
Source: (Roy and Oberkampf 2011) 

Figure 4-8. Propagation of Input Uncertainties to Obtain Output Uncertainties 

The second step is to propagate uncertainties through the model. Statistical and knowledge 
uncertainties should be treated independently because they characterize different types of 
uncertainty. Monte Carlo sampling is often the simplest approach. For inputs with statistical 
uncertainty, this entails randomly choosing a number between 0 and 1 and then using the inverse 
CDF to choose the sample for the input parameter. For inputs with knowledge uncertainty, there 
is not an associated probability distribution function but rather a range of possible values. In 
most practical applications, there will be a mix of both types of uncertainties. In these 
circumstances, a nested sampling approach is recommended. For each sample from the 
knowledge uncertainties, compute and propagate the statistical uncertainties as previously 
described. Repeat across the intervals of the knowledge uncertainties. The result will be an 
ensemble of CDFs. This ensemble is then used to construct a probability box (i.e., p-box) to 
express both the statistical and knowledge uncertainty without confounding them, as illustrated 
in Figure 4-9. There are two ways to interpret the p-box. First, for a given probability value, 
there is a predicted interval-value range of the response. Likewise, for a given response value, 
there is a range of probabilities for which the value will occur. In other words, there is no single 
value of probability that describes the uncertainty given the present state of knowledge. 

Note that the Monte Carlo sampling approach requires a large number of samples to characterize 
the uncertainty, especially for low-probability events. Time may be a limiting factor if the 
simulation takes a very long time to run; in these situations, alternative methods should be 
considered. Although beyond the scope of this guidebook, some alternatives include polynomial 
chaos expansion (Xiu 2010), stochastic collocation (Xiu 2015), low-rank tensor approximations 
(Konakli and Sudret 2016) for statistical uncertainty and interval analysis (Jones et al. 1998), and 
Dempster-Shafer evidence theory (Li et al. 2010) for knowledge uncertainty. 
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Figure 4-9. Example P-Box 

The final step is to determine the total uncertainty in the model outputs. Start with the p-box that 
was generated from propagating the model input parameters. Next, append the model form 
uncertainty from the validation metric7 to the sides of the p-box, which captures the increased 
knowledge uncertainty of the response; see Figure 4-10. Numerical approximation errors are also 
treated as knowledge uncertainties, which are appended to the sides of the p-box. The result is a 
p-box that explicitly accounts for and segregates uncertainties due to model inputs, numerical 
approximations, and model form errors. 

 
7 In this example, the validation metric is the smallest area between the p-box and the experimental CDF. 
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Source: (Roy and Oberkampf 2011) 

Figure 4-10. Increase in Predictive Uncertainty Due to the Addition of Model Form Uncertainty 

UQ does not indicate whether a model’s predictions are “right” or “true.” Instead, UQ indicates 
that if the validity of a model is accepted for an intended use, then the validity of the conclusions 
drawn from the model must be accepted up to the degree suggested by the UQ analysis. UQ 
plays a key role in a V&V plan to build confidence in the predictive capabilities of complex 
models and simulations for a particular intended use. 

4.3.1 Useful Software and Resources 

The Sandia National Laboratories Dakota project (https://dakota.sandia.gov/) provides software 
for UQ with sampling, reliability, stochastic expansion, and epistemic methods. Dakota versions 
5.0 and newer are available under a GNU Lesser General Public License. Extensive user 
resources—including manuals, videos, and runnable examples—are provided on the Dakota 
Project Website. 

4.3.2 Example 

The following example is taken from the STAT COE Report, “Using Statistical Intervals to 
Assess System Performance” (Ortiz and Truett 2015) and illustrates the statistical intervals 
previously described. Note that all data presented in this example are notional and used for 
demonstrative purposes only. 

https://dakota.sandia.gov/
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This case study uses a generic example of a designed experiment applied to assess an MWS as 
shown in Figure 4-11. An MWS works in conjunction with a CM tracker to defeat guided seeker 
threats to aircraft. The MWS acts as a cueing system by detecting, declaring, and eventually 
handing off a potential threat to the CM tracker. The goal of the analysis is to assess various 
performance measures and help make a determination on the suitability of the MWS. This 
example focuses on the “time to handoff” performance measure, which has a threshold 
requirement to be less than 500 milliseconds. 

 

 
Source: ITT Defense 

Figure 4-11. Missile Warning System 

 

MWS handoff capabilities and timelines vary according to threat type, engagement slant range, 
atmospheric conditions, clutter level, and platform flight profile. 

For simplicity, the designed experiment will consider only one threat type and will vary the 
following factors at a high and low level (+1, −1 in coded units, respectively): 

• Altitude 

• Range 
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• Aircraft Speed 

• Clutter 

The following 24 design (with 6 center points) shown in Table 4 was created and executed for the 
MWS. The performance measure of interest (i.e., response) is time to handoff and is shown in 
the last column of Table 4. 

Table 4-6. 24 Design for MWS Test 

  
 

The MWS program wishes to demonstrate that the time to handoff will not exceed 
500 milliseconds throughout the operational region as defined by the factors and levels. A more 
statistically precise statement would be that the program wants to show, with 95 percent 
confidence, that the probability of success (𝑃𝑃𝑠𝑠) is at least 99 percent. That is,  

Ps(𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 𝑡𝑡𝑡𝑡 ℎ𝑎𝑎𝑛𝑛𝑑𝑑𝑡𝑡𝑎𝑎𝑎𝑎 < 500𝑚𝑚𝑠𝑠) ≥ 0.99 

at any point within the design space. Run number 4 (highlighted in red in Table 4) already 
demonstrates that the MWS can exceed 500 milliseconds under certain conditions. 

The following regression model was created based on the collected data and can be used to 
predict time-to-handoff performance (in milliseconds) across the design space: 



4. Analysis 

MODELING AND SIMULATION FOR T&E GUIDEBOOK 
58 

Time to handoff = 409.27 + 29.35A + 38.93B − 10.09C + 9.86D + 20.09AB − 14.07AD  

where A is altitude, B is range, C is aircraft speed, and D is clutter. 

The regression model is represented graphically in Figure 4-12 with aircraft speed and clutter 
held constant. This surface plot clearly shows the relationships between the response (time to 
handoff) and two of its input factors (altitude and range). The figure shows that as range and 
altitude increase, the MWS takes longer to hand off. The model allows for interpolation within 
the design space, thus allowing for prediction of untested scenarios. 

  
Source: STAT COE-Report-04-2015 (Ortiz and Truett 2015) 

Figure 4-12. 3-D Graphical Representation of the Regression Model Developed Using DOE 
for MWS Example 

For this MWS case study, the parameter of interest is the mean time to handoff. The basic form 
for a statistical interval for the mean is as follows: 

𝑦𝑦� ± 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑛𝑛) ∗ 𝑠𝑠 

where 

• 𝑦𝑦� is the sample mean. 

• 𝑠𝑠 is the standard error. 
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• 𝑛𝑛 is the sample size. 

• 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑛𝑛) is a critical value that changes depending on the interval type and the specified 
confidence level. 

4.3.2.1 Confidence Interval 

For the MWS example, suppose the null and alternate hypotheses are as follows: 

𝐻𝐻𝑜𝑜: 𝜇𝜇𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 ≥ 500 

𝐻𝐻1: 𝜇𝜇𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 < 500 

Note that 𝜇𝜇𝑡𝑡𝑖𝑖𝑚𝑚𝑙𝑙 represents the population mean time to handoff. In this example, a one-sided 
interval is constructed with the pre-specified 95 percent confidence level. The 95 percent upper 
confidence bound for each test condition is shown in Table 4-7. As highlighted in red, the 
95 percent upper confidence bound for Runs 4 and 12 exceeds 500 milliseconds. There is not 
sufficient evidence to reject the null hypothesis. (i.e., the true mean of the population could be 
more than 500 milliseconds when altitude and range are both at the high level and aircraft speed 
is at the low level). 

Table 4-7. Calculated Upper Confidence Intervals for MWS Example 

 
Source: STAT COE-Report-04-2015 (Ortiz and Truett 2015) 
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4.3.2.2 Prediction Interval 

PIs encompass the variation in both the estimation and the response. Therefore, PIs tend to be 
wider than CIs. Table 4 shows the results for the MWS case study with a new column that 
provides the 95 percent PIs. As the table shows, Runs 4, 8, and 12 all have a value greater than 
500 milliseconds (highlighted in red in Table 4). These results suggest that although the true 
mean could be less than 500 milliseconds at Run 8, the response variation can show values that 
exceed 500 milliseconds. 

Table 4-8. Calculated Upper Prediction Intervals for MWS Example 

  
Source: STAT COE-Report-04-2015 (Ortiz and Truett 2015) 

4.3.2.3 Tolerance Interval 

A column for the 99 percent population/95 percent TI for the MWS case study data has been 
added in Table 4-9. Runs 4, 8, 12, and 16 fail to meet the requirement that time to handoff is less 
than 500 milliseconds at least 99 percent of the time. Note that neither the CI nor the PI 
calculations were able to address this requirement directly. The TI is the only interval that 
indicates what scenario will result in failures more than 1 percent of the time. However, the TI 
does not directly provide an estimate for 𝑃𝑃𝑠𝑠. To get an estimate for 𝑃𝑃𝑠𝑠, the inverse of the TI needs 
to be found, as shown in the last column of Table 4-9. 
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Table 4-9. Calculated Upper Tolerance Interval for MWS Example 

  
Source: STAT COE-Report-04-2015 (Ortiz and Truett 2015) 

4.4 Advanced Methods and Additional Techniques 

This section of the guidebook covers advanced techniques that may be applicable for some tests. 
Project managers should explore and understand their potential applications and use the guidance 
within this section to determine the contexts in which these techniques are most beneficial. 
Through informed application, these advanced techniques can significantly elevate the quality 
and impact of T&E processes. By employing statistical techniques early in the process, 
practitioners can gain critical insights into the data’s underlying structure, identify potential 
anomalies, and ensure that the data is suitable for further analysis. This preliminary assessment 
helps to mitigate risks associated with data quality issues and lays a solid foundation for 
subsequent analyses. Additionally, careful planning of statistical analyses ensures that the chosen 
methods are appropriate for the research questions and data characteristics, optimizing resource 
use and enhancing the credibility of the findings. 

4.4.1 Unbalanced Data 

The proper approach to regression or other statistical analysis for validating M&S depends on 
sample sizes—in particular, on the amounts of live versus simulation data. When both sets of 
data are balanced, a single regression model combining the two, for example as the differences 
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between matched data pairs, can be appropriate. However, if there are much more M&S data 
than live test data (unbalanced data sets), confounding correlations can make it difficult or 
impossible to determine whether statistically significant differences exist between the live and 
simulation data. When the data sets are unbalanced, at least two approaches can be used: 

• Bootstrapping (or resampling), in which an overall balanced data set is created by 
randomly sampling with replacement to generate a smaller subset from the larger M&S 
data set and combining those resampled simulation data with the live test data (Efron and 
Tibshirani 1994). Regression or other statistical analysis can be performed on the 
balanced data set, and the procedure can be repeated many times, generating distributions 
of test, model coefficients, and predictions (Wojton et al. 2019; Wojton and Avery 2019). 
This approach can eliminate confounding and allow statistical testing of the significance 
of interactions among factors in a regression model. In particular, assuming that the 
model has a live versus M&S source for purposes of validation, bootstrapping can be 
used to analyze whether statistically significant differences exist between the live and 
M&S data (the sources) and other regression factors (i.e., whether the M&S and live data 
agree in some circumstances but not others). 

• Constructing two regression models, one for the live data and one for the M&S data, and 
testing statistically for differences between the coefficients composing each of the two 
models. This approach should be straightforward for live test data collected using plans 
developed by application of DOE, as a statistical model of the testing and its results 
underlies that approach. 

4.4.2 Sequential Analysis 

This section of the guidebook is a synopsis of the IDA Document, “A Review of Sequential 
Analysis” (Wojton et al. 2020), with material drawn from additional sources. 

In sequential analysis, the characteristics of the data and their amount undergoing statistical 
analysis can change and be adjusted as results are obtained. Thus, sequential analysis offers the 
possibility that defensible conclusions can be obtained more quickly using lesser resources than 
would be the case if test plans and resources are predetermined at the outset. Sequential analysis 
comprises sequential testing and sequential estimation, in which the amount of data used can 
change as information accrues, and sequential design, in which the characteristics of the data 
being collected can also change. These three categories are not distinct in that the approaches and 
methods they employ can overlap. 
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Sequential Testing 

Sequential testing involves testing hypotheses as data are collected and as the sample size, which 
is not predetermined at the outset of the analysis, increases. After each test, decisions are made 
about whether more data should be collected. The sequential probability ratio test (SPRT) can be 
regarded as the origin of this approach (Wald 1945).8 Using the SPRT, data are obtained one 
datum at a time. With the addition of each datum, statistical testing is performed to decide to 
accept the null hypothesis, to reject the null hypothesis, or to collect additional data. Using the 
SPRT can often require lesser collection of data than nonsequential testing in which the amount 
of data needed is fixed at the outset (Wojton et al. 2020). The SPRT also deals with Type I errors 
(incorrect rejection of the null hypothesis) and Type II errors (incorrect acceptance of the null 
hypothesis) on par with nonsequential testing (Wald 1945).  

The potential savings offered by sequential testing is illustrated by analysis of a system’s failure 
rate using the SPRT to determine whether its failure rate p = p1 > p0. The null hypothesis is that 
the failure rate is p0, and the alternative is that it is greater and equal to at least p1. In this 
particular case, as shown in Figure 4-13, after 11 runs and 4 failures, use of the SPRT indicates 
the null hypothesis should be rejected in favor of the alternative. The required number of runs for 
a nonsequential exact binomial test is 50. See Appendix A of the IDA Document, “Case Study 
on Applying Sequential Analyses in Operational Testing” (Medlin et al. 2021), for additional 
details. 

 
8 Abraham Wald developed the SPRT while a member of the Statistical Research Group at Columbia University 
during World War II. The Navy was interested in determining the probability an anti-aircraft gun could hit a directly 
approaching dive bomber and desired to do so using the minimum test resources necessary (Stein 1945). 
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Source: IDA Document NS D-32904 (Medlin et al. 2021) 

Figure 4-13. SPRT Applied to Analyze a System’s Failure Rate 

Sequential Estimation 

Sequential estimation involves calculating statistical quantities or intervals where the amount of 
data used is determined based on the accruing information as the calculations proceed. Examples 
of sequential estimation include: 

• Inverse binomial sampling “which can estimate the log-likelihood of an entire data set 
efficiently and without bias” and with minimum variance (van Opheusden et al. 2020). 

• Double sampling, in which one sample is used to estimate the variance and a second 
sample, sized based on the first (and not necessarily nested within the first sample), is 
used to estimate the mean (Stein 1945; Hidiroglou 2001). This approach enables 
“calculation of a confidence interval of fixed width that is independent of the mean” 
(Wojton et al. 2020). 

Sequential Design 

Sequential design involves applying DOE to plan and conduct a series of tests in which the 
factors used and the characteristics and amount of data collected during each test are determined 
based on the information gained as the testing is conducted. Although not commonly described 
as sequential, DOE can be used in this manner, in which the results of prior testing are used to 
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inform and design subsequent testing. An example of sequential application of DOE would be an 
approach in which the number of tests/experiments and the factors and interactions/terms 
included in each experimental design/model are determined for each additional phase of testing 
based on the significance (i.e., p-values of significance tests) of the interactions/terms found 
upon analysis of the results from the prior phase; see Figure 4-14. See Appendix B of the IDA 
Document, “Case Study on Applying Sequential Analyses in Operational Testing” (Medlin et al. 
2021) for additional details. 

  
Source: IDA Document NS D-32904 (Medlin et al. 2021) 

Figure 4-14. Example of Implementation of Sequential DOE 

These sequential analysis approaches can be used when planning and conducting validation of 
M&S. For example, sequential design can be used to plan the live testing that generates data for 
comparison with M&S responses. And sequential testing and estimation can be used to decide 
whether enough data, both from M&S and live testing, have been obtained to accept or reject the 
null hypothesis that the M&S matches the live data and should be validated. The use of these 
methods offers the possibility that the amount of both live test data and simulation results needed 
for validation will be less than if the validation effort is planned and conducted nonsequentially. 

4.4.3 Predicted Probability Validation 

This section of the guidebook comprises a synopsis of the IDA Document, “Predicted 
Probabilities Validation” (Haman et al. 2022). 
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Predicted probability validation (PPV) provides a means to statistically compare binary results 
from testing with probabilities predicted by M&S (Haman et al. 2022). Examples of the 
application of PPV include the following: comparing M&S predictions of the probability of 
critical damage to a system’s components by a kinetic threat to live binary test results of whether 
damage was or was not observed; or comparing binary test results of the success or failure of 
executing elements of a kill chain to M&S predictions of the probability of success for each 
element of the kill chain. 

PPV data comprise M&S-predicted probabilities 𝑝𝑝𝑖𝑖 ranging from 0 to 1 and paired with 
corresponding binary test outcomes 𝑦𝑦𝑖𝑖 of 0 or 1: (𝑝𝑝𝑖𝑖,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1,2, …𝑛𝑛. As shown in Table 4-10, 
the PPV methods used to compare the M&S and live test outcomes involve calibration, 
discrimination, and overall performance: 

• Calibration methods assess the extent to which probabilities predicted by the M&S are 
too high or too low compared to the binary test data. For example, if M&S predicts the 
probability of success to be 40 percent, then 20 test runs should have 8 successes. 

• Discrimination methods assess whether the relative relationship of test outcomes matches 
the predicted probabilities, for example, whether the number of successes observed in 
live testing is higher for larger M&S-predicted probabilities and vice versa. 

• Overall performance methods assess calibration and discrimination simultaneously. 

 
Table 4-10. PPV Methods for Comparing M&S Probabilities with Binary Test Results 

Type Metrics Graphical Techniques 

Calibration • Harrell’s U index 
• Intercept, slope 
• Emax, E90, Eavg 
• Spiegelhalter’s statistic 

• Group averages 
• Parametric and 

nonparametric calibration 
curves 

Discrimination • Harrell’s D index 
• Somers’ Dxy index 
• C index (AUC) 

• Histograms of binary test 
outcomes 

Overall Performance • Harrell’s Q index 
• Nagelkerke’s R2 
• Brier score 

 

Source: IDA Document D-33156 (Haman et al. 2022) 
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Group Average Scatter Plots 

This method divides the live data into equal-sized groups and calculates the average M&S-
generated probability and average binary test result within each group. The results are then 
plotted and compared with the ideal calibration line for which the two would be equal; see the 
notional example in Figure 4-15. 

  
Source: IDA Document D-33156 (Haman et al. 2022) 

Figure 4-15. Example of a Group Average Plot 

Histograms 

Plotting the frequency of binary successes (y = 1) and failures (y = 0) associated with each live 
data group at the top and bottom of a histogram can provide useful information; see the notional 
example in Figure 4-16 showing good discrimination: 

• Good discrimination is indicated by the longest bars at the top clustering around 
predicted probability of 1 and the longest bars at the bottom clustering around 0. 

• Perfect discrimination is indicated if all the bottom bars are to the left of all the top bars. 

• Bad discrimination is indicated if the top and bottom bars are all about the same height 
and spread evenly across the predicted probabilities. 
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Source: IDA Document D-33156 (Haman et al. 2022) 

Figure 4-16. Example of PPV Histogram 

Calibration Curves 

A parametric calibration curve employs locally estimated scatterplot smoothing to plot the binary 
test data as a function of the probabilities predicted by the simulation (Cleveland 1979). A 
nonparametric calibration curve employs logistic regression to model the actual probability of 
success, 𝑝𝑝�, as a function of the logit of the probability predicted by the simulation, 𝑝𝑝:9 

logit(𝑝𝑝�) = 𝑦𝑦0 + 𝑦𝑦1logit(𝑝𝑝) 

with 𝑦𝑦1 being the slope of the curve and 𝑦𝑦0 the intercept. These calibration curves are then 
compared to the ideal calibration line for which the predicted probability matches the actual 
probability; see the notional example in Figure 4-17. In this example, the slope is less than 1, and 
the M&S-generated low probabilities are too small, and the M&S-generated high probabilities 
are too large. When the slope is greater than 1, the M&S-generated low probabilities are too 
large, and the M&S-generated high probabilities are too small. 

 
9 logit(𝑧𝑧) = log ( 𝑧𝑧

1−𝑧𝑧
) 
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Source: IDA Document D-33156 (Haman et al. 2022) 

Figure 4-17. Example of PPV Calibration Curves 

Harrell’s U Index 

Harrell’s U index measures calibration by comparing the likelihood of the test data (n observed 
outcomes) given the M&S-predicted probabilities (represented using 𝐿𝐿01, the corresponding 
negative log-likelihood) with the likelihood of the test data given the actual probabilities 
(represented using 𝐿𝐿𝑎𝑎𝑎𝑎, the corresponding negative log-likelihood):10 

𝑈𝑈 = (𝐿𝐿01 − 𝐿𝐿𝑎𝑎𝑎𝑎)/𝑛𝑛 

𝐿𝐿01 = −2�(𝑦𝑦𝑖𝑖log (𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖)log (1 −
𝑛𝑛

𝑖𝑖=1

𝑝𝑝𝑖𝑖)) 

𝐿𝐿𝑎𝑎𝑎𝑎 = −2�(𝑦𝑦𝑖𝑖log (𝑝𝑝𝚤𝚤�) + (1 − 𝑦𝑦𝑖𝑖)log (1 −
𝑛𝑛

𝑖𝑖=1

𝑝𝑝𝚤𝚤�)) 

When 𝑈𝑈 is a large positive number, 𝐿𝐿𝑎𝑎𝑎𝑎 is more likely than 𝐿𝐿01, indicating poor calibration. 
When 𝑈𝑈 is a large negative number, 𝐿𝐿01 is more likely, indicating good calibration. 

 
10 Maximizing likelihood is equivalent to minimizing the corresponding negative log-likelihood. 
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Error Indices 

Error indices measure the difference between the nonparametric calibration curve and the ideal 
calibration line. 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥,𝐸𝐸90,𝐸𝐸𝑎𝑎𝑙𝑙𝑎𝑎 are, respectively, the maximum, 90th percentile, and average 
vertical distances between the nonparametric calibration line and the ideal calibration curve 
taken at increments along the horizontal axis. The smaller their values, the better the calibration. 

Spiegelhalter’s Statistic 

Spiegelhalter’s statistic tests a null hypothesis that the M&S is perfectly calibrated. The p-value 
for this statistic, 𝑆𝑆𝑝𝑝, is computed according to the journal article, “Probabilistic Prediction in 
Patient Management and Clinical Trials” (Spiegelhalter 1986): 

𝑆𝑆𝑧𝑧 =  
∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛
𝑖𝑖=1 𝑝𝑝𝑖𝑖)(1− 2𝑝𝑝𝑖𝑖)

∑ (1 − 2𝑝𝑝𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)

 

𝑆𝑆𝑝𝑝 = 2𝛷𝛷(−|𝑆𝑆𝑧𝑧|) 

where 𝛷𝛷(𝑥𝑥) = 𝑃𝑃𝑃𝑃𝑡𝑡𝑏𝑏(𝑍𝑍 ≤ 𝑥𝑥) is the standard normal CDF.11 

If 𝑆𝑆𝑝𝑝 is sufficiently small, the null hypothesis is rejected, indicating the M&S is not perfectly 
calibrated. 

Somers’ Dxy Index 

Somers’ 𝐷𝐷𝑥𝑥𝑥𝑥 index assesses the extent to which all pairs of binary test data and M&S-predicted 
probabilities are concordant (ordered properly) or discordant (not properly ordered). Pairs of data 
in which failure (y = 0) is associated with a low predicted probability and success (y = 1) is 
associated with a high predicted probability are concordant and conversely: 

𝐷𝐷𝑥𝑥𝑥𝑥 =
𝑁𝑁𝐶𝐶 − 𝑁𝑁𝐷𝐷
𝑁𝑁𝑇𝑇

 

where 𝑁𝑁𝐶𝐶 is the number of concordant pairs, 𝑁𝑁𝐷𝐷 is the number of discordant pairs, and 𝑁𝑁𝑇𝑇 is the 
total number of pairs. If all the pairs are concordant, 𝐷𝐷𝑥𝑥𝑥𝑥 = 1, and the M&S is perfectly 
discriminating. 

 
11 See the Cumulative Distribution Function of the Standard Normal Distribution in the NIST Engineering Statistics 
Handbook (https://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm). 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm
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Consider the notional data displayed in Table 4-11 in which 𝑁𝑁𝐶𝐶 = 2 × 8 + 2 × 5 +  6 × 5 =
56;  𝑁𝑁𝐷𝐷 = 1 × 6 + 1 × 1 + 8 × 1 = 15;  𝑁𝑁𝑇𝑇 = (2 + 6 + 1) × (1 + 8 + 5) = 126; 𝐷𝐷𝑥𝑥𝑥𝑥 =0.33. 

Table 4-11. Notional Pairs of Observed Binary Data and Predicted Probabilities 

p (row) / y (column) 0.30 0.60 0.90 

0 2 6 1 

1 1 8 5 
 

C Index 

The 𝐶𝐶 index is computed using the 𝐷𝐷𝑥𝑥𝑥𝑥 index: 𝐶𝐶 = 𝐷𝐷𝑥𝑥𝑥𝑥+1
2

. When 𝐶𝐶 = 1, the M&S is perfectly 

discriminating; when 𝐶𝐶 = 0.5, the M&S predictions are random. 

Harrell’s D Index 

Harrell’s D index assesses discrimination by comparing the mean of the n binary test outcomes, 
𝑦𝑦�, to the M&S-predicted probabilities (Harrell and Lee 1990). The index is computed using the 
difference between the negative log-likelihoods of the mean binary outcome and the M&S 
predictions: 

𝐿𝐿𝑎𝑎0 = −2�(𝑦𝑦𝑖𝑖log (𝑦𝑦�) + (1 − 𝑦𝑦𝑖𝑖)log (1 −
𝑛𝑛

𝑖𝑖=1

𝑦𝑦�)) 

𝐷𝐷 = (𝐿𝐿𝑎𝑎0 − 𝐿𝐿01)/𝑛𝑛 

If 𝐷𝐷 is positive, 𝐿𝐿01 is more likely than 𝐿𝐿𝑎𝑎0, and the M&S discrimination is good. If D is 
negative, 𝐿𝐿𝑎𝑎0 is more likely than 𝐿𝐿01, and discrimination is poor. 

Harrell’s Q Index 

Harrell’s Q index assesses overall performance by combining the 𝐷𝐷 and 𝑈𝑈 indices described 
above: 𝑄𝑄 = 𝐷𝐷 − 𝑈𝑈. Recall that positive values of 𝐷𝐷 mean discrimination is good, and positive 
values of 𝑈𝑈 mean calibration is poor. Therefore, when 𝑄𝑄 is positive, the quality of the 
discrimination is greater than the shortcomings in calibration, meaning overall performance is 
acceptable, if not good. If 𝑄𝑄 is negative, overall performance of the M&S is poor. 
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Nagelkerke’s R2 Index 

Nagelkerke’s R2 index assesses overall performance by measuring predictive strength 
(Nagelkerke 1991): 

𝑅𝑅2 =
1 − exp (𝐿𝐿01 − 𝐿𝐿𝑎𝑎𝑜𝑜

𝑛𝑛 )

1 − exp (−𝐿𝐿𝑎𝑎0𝑛𝑛 )
 

Good overall performance is indicated by large positive values, poor performance by small or 
negative values. 

Brier Score 

The Brier score assesses overall performance by computing the mean squared error between the 
binary test data and the M&S-predicted probabilities: 

Brier =
1
𝑛𝑛
�(𝑝𝑝𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

Small score values indicate good performance. Score values greater than 0.25 mean the predicted 
probabilities are no better at matching the binary test data than flipping a coin. 

Summary of Metrics Indicating Good Calibration, Discrimination, and Overall Performance 

When the group averages cluster fairly well around the ideal calibration curve; the slope of the 
parametric calibration curve is close to 1 and its intercept is close to 0; top histogram bars cluster 
around predicted probabilities near 1 and bottom histogram bars cluster around 0; and all the 
other metrics discussed above are within their favorable ranges for either discrimination, 
calibration, or overall performance, then both calibration and discrimination are good, as is 
overall performance; see Figure 4-18. Note that bootstrapping can be used to estimate CIs for all 
the metrics of calibration, discrimination, and overall performance discussed above; again, see 
Figure 4-18. Additional examples are provided in the IDA Document, “Predicted Probabilities 
Validation” (Haman et al. 2022). 
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Source: IDA Document D-33156 (Haman et al. 2022) 

Figure 4-18. Example of Metrics with Confidence Intervals Indicating Good Calibration, 
Good Discrimination, and Good Overall Performance 

4.4.4 Time Series Analysis and Functional Data Analysis 

Sometimes the measure of interest from a simulation is a time series or a function. Consider a 
simulation that models the flight path of a projectile through the atmosphere. The data in this 
case is the relative position of the object in space at a particular time. The objective of validation 
in this case is to evaluate how well the simulation compares to discrete live event observations of 
the actual system, such as a flight test. The fact that the response or measure of interest is not a 
value but rather a series of values presents a unique set of challenges. The following subsections 
present, at a high level, some approaches that have been used for these occasions and discuss 
some of the advantages and disadvantages of these approaches. 

It is important to emphasize that a rigorous validation approach should help determine how well 
the M&S represents the system under test. The approach should be in line with an acceptability 
criterion that is based on a system performance specification. The approach should also help 
quantify test risk (both power and confidence). 

4.4.4.1 Approach: Functional Data Analysis 

Functional data analysis (FDA) is a branch of statistics that deals with information represented 
by functions, curves, or shapes (Ramsay and Silverman 2005). This type of data analysis is used 
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when data is collected over a continuous range of points rather than at discrete intervals. FDA is 
particularly useful in fields such as medicine, finance, and environmental science, where 
observations are often recorded over a period of time. The main goal of FDA is to explore and 
model the underlying dynamics of the data, focusing on the structural features of the data, such 
as peaks, troughs, and overall shape. 

FDA can be used to compare two time series by considering each time series as a single function 
or curve. The steps involved in comparing two time series using FDA are as follows: 

1. Data Collection: Collect the time series data to be compared. This data could be any 
type of data that is recorded over a period. 

2. Data Preprocessing: Clean the data by removing any outliers or noise. This step is 
crucial as it can significantly impact the results of the analysis. 

3. Data Representation: Represent each time series as a smooth function. This can be 
done using various techniques such as smoothing splines, Fourier series, or wavelets. 
This step transforms the discrete time series data into continuous functions. 

4. Functional Principal Component Analysis (FPCA): Perform FPCA to reduce the 
dimensionality of the functional data and to identify the main modes of variation 
between the curves. This step helps in understanding the key differences between the 
two time series. 

5. Functional Hypothesis Testing: After identifying the main modes of variation, 
perform hypothesis testing to determine whether the differences between the two time 
series are statistically significant. This step involves comparing the mean functions of 
the two time series and testing whether they are equal. 

6. Functional Regression: If one time series is dependent on the other, use functional 
regression to model this relationship. This step involves using one time series as the 
predictor variable and the other as the response variable. 

7. Interpretation of Results: Finally, interpret the results of the analysis. This could 
involve identifying key differences between the two time series, determining whether 
one time series can predict the other, or determining whether the differences between 
the two time series are statistically significant. Remember, the specific steps and 
techniques used can vary depending on the nature of the time series data and the 
specific goals of the analysis. 

A coding example of this process and its steps is available in the book Functional Data Analysis 
(Ramsay and Silverman 2005). 
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Using FDA for time series comparison offers several benefits. The approach captures the entire 
shape of the time series, not just summary statistics. It accounts for time warping and 
misalignments and is robust to noise. FDA also enhances interpretability with a rich set of tools 
for similarity measurement and visualization. These tools can help determine how well the M&S 
represents the system under test. Using FDA also presents some challenges. The approach can be 
computationally expensive for large data sets, and choosing the most appropriate similarity 
measure depends on the specific characteristics of the data. 

4.4.4.2 Example of Using Functional Data Analysis and Design of Experiments 

An important objective of any validation method is that it should aid in improving the M&S of 
the sensor. Ultimately, the goal of these large-scale simulations is to continuously become less 
and less wrong with their predictions. A validation approach should not only score the M&S on 
its ability to predict performance accurately but should aid in identifying where in the operational 
space the M&S does not fit as well, and it should help identify what factors contribute to these 
discrepancies. Using such a validation approach will lead to a more thorough assessment of how 
valuable the M&S is and where future resources, research, and testing need to be focused. 

An excellent example of a more rigorous validation methodology is presented in the journal 
article, “Model Validation of Functional Responses Across Experimental Regions Using 
Functional Regression Extensions to the CORA Objective Rating System” (Storm et al. 2017). 
The article presents a methodology specifically devoted to the validation of dynamical responses 
of M&S, such as a time series. The approach combines DOE and FDA to assess the predictive 
capability of a simulation across the operational space. DOE is used to sample the operational 
space efficiently. FDA is used to model the system response (a time series). The correlation 
analysis (CORA) objective rating system, a validation metric, is used to provide a measure of 
disagreement between live and simulated results anywhere within the factor space. The CORA 
rating varies from 0 to 1; values near 1 represent little discrepancy between M&S and live data; 
see Figure 4-19. 
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Source: (Storm et al. 2017) 

Figure 4-19. Example Output from the CORA Validation Methodology 

Figure 4-19(a) is the experimental design; blue points represent tested scenarios, and clear points 
are estimated points based on an empirical prediction model. Figure 4-19(b) is the CORA rating 
across Factors 1 and 2. The rating varies from 0 to 1, with values near 1 representing little 
discrepancy between M&S and live data. Again, using a more rigorous validation approach such 
as the one presented above will lead to a better understanding of the M&S predictive capabilities 
and will aid in root cause analysis. 

4.4.4.3 Approach: Other Validation Metrics in the Literature 

There are several validation metrics or statistical approaches for time series data in the literature 
that are more informative and allow for a more robust assessment of the M&S. For example, the 
Sandia National Laboratories Report, “Validation Metrics for Deterministic and Probabilistic 
Data” (Maupin and Swiler 2017), compares metrics to validate simulation models where test 
cases produce data over a period. These validation metrics quantify the difference between live 
and simulated observations. The report provides guidance in selecting a validation metric based 
on the quantity of interest and the characteristics of the observed and simulated data sets. The 
report groups validation metrics into three data types: 

• Type 1: Live and simulated responses are treated as point values (deterministic data with 
no uncertainty or noise). 
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• Type 2: Live responses are treated as stochastic (noisy) values. 

• Type 3: Both live and simulated data are treated as noisy data. 

Table 4-12 summarizes the validation metrics presented in the Sandia Report and the types of 
data for which they are applicable. 

Table 4-12. Validation Metrics and the Types of Data to Which They Are Targeted 

Metric Type 1 Type 2 Type 3 

Root Mean Square X   

Minkowski Distance X   

Normalized Euclidean Metric  X  

Mahalanobis Distance  X  

Kullback-Leibler Divergence   X 

Symmetrized Divergence   X 

Jensen-Shannon Divergence   X 

Hellinger Metric   X 

Kolmogorov-Smirnov Test  X X 

Total Variation Distance   X 

Simple Cross-Correlation X   

Normalized Cross-Correlation X   

Normalized Zero-Mean Sum of Squared Distances X   

Moravec Correlation X   

Index of Agreement X   

Sprague-Geers Metric X   

Source: Sandia Report SAND2016-1421 (Maupin and Swiler 2017) 

The Sandia Report also highlights signal processing validation metrics. These metrics address 
high-frequency and phased-based data. In general, these metrics calculate the correlation 
between simulated and live results and can identify trends in the differences between the results. 
Some validation methods mentioned include normalized cross-correlation, Moravec correlation, 
and Sprague-Geers metric. These signal processing validation metrics are meant to be applied to 
Type 1 data. Analysis with Type 2 or 3 data can be done; however, the uncertainty information 
would not be utilized. Further research on how best to incorporate uncertainty is needed. 

4.4.4.4 Legacy Approaches 

Some legacy approaches are not recommended for analysis. 
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Summarizing the Time Series 

An initial approach when dealing with time series or functional data could be to try to reduce the 
dimensions of the problem by looking at and comparing summary statistics. This approach fails 
to capture the entire shape of the time series, leading to very limited insight and possibly an 
incorrect conclusion as to whether the simulated results match the live data. Therefore, more 
sophisticated approaches are needed to capture temporal patterns. 

Using M&S to Bound the Live Data 

One common approach is to use the simulation itself to establish the bounds of the live data. This 
validation approach compares bounds created by a Monte Carlo generated time series of a 
validation metric from a simulation against a single, discrete live event observation of the actual 
system. 

However, using the M&S to bound the live data does not aid in improving the M&S by 
identifying the factors affecting prediction performance, does not provide information on the 
areas in the operational space where prediction is poor, and gives no insight into the uncertainties 
that exist in the system. 

4.4.4.5 Summary of Approaches 

Currently, there appears to be no consensus on what the best approach is when comparing live 
and simulated time series data. The appropriate approach is dependent on the specific 
characteristics of the data and the amount of data that can be obtained from live and simulated 
tests. This section presented a high-level overview of approaches that have been discussed in the 
literature and highlighted their pros and cons. It is important to remember that, ideally, a 
validation approach should inform the user not only about how well the M&S represents the 
system under test but also about the conditions under which the simulation does not perform 
well. The approach should also help quantify test risk (e.g., power, confidence) to quantify the 
credibility of the analysis and aid the decision makers. 

4.4.5 Metamodel Techniques for Analysis of M&S Data 

This section of the guidebook is a synopsis of introductory and overview material in Sections 4 
and 5 of the IDA Paper, “Metamodeling Techniques for Verification and Validation of Modeling 
and Simulation Data” (Haman and Miller 2022). 

As noted previously, because metamodels summarize M&S responses, they can be used to assess 
M&S outputs relatively quickly and efficiently across the range of factors and inputs affecting a 
system’s performance. Metamodels facilitate the comparison of M&S responses with live data; 
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the understanding of system performance under conditions that are impossible to create for live 
testing; the discovery of potentially problematic M&S outputs; and the quantification of 
uncertainty in M&S predictions. 

Building Metamodels 

The appropriate techniques to build metamodels depend on whether M&S responses are 
deterministic (no randomness in responses) or stochastic (varying responses for the same inputs), 
as well as whether the responses are discrete or continuous: 

• Nearest neighbor or decision tree interpolations are best suited for M&S generating 
deterministic, discrete responses. 

• GP interpolations are best suited for M&S generating deterministic, continuous 
responses. 

• GAMs are best suited for M&S generating stochastic responses, either discrete or 
continuous. 

A nearest neighbor interpolator makes predictions identical to the observed output closest to the 
point at which a prediction is needed. This interpolation is not based on parametric statistical 
theory. Rather, it assumes responses vary continuously without large variation. 

A decision tree comprises multiple sequential nodes with branching paths. The path branch 
followed from each node to the next is determined by the answer to a true or false question. The 
predicted M&S response is provided at the termination of the path determined by the sequence of 
answers. 

Examples of the implementation of both techniques are provided in the IDA Paper (Haman and 
Miller 2022). 

GP interpolation assumes that because the unobserved M&S responses are not known with 
certainty, they, and their uncertainty, can be predicted by the likely values of a random function. 
GPs are determined by the mean function, 𝜇𝜇(𝑡𝑡), usually taken to be zero, and the two-parameter 
covariance kernel Κ(𝑠𝑠, 𝑡𝑡), which determines the behavior of the metamodel between any two 
observed M&S responses. There are many possible covariance kernels; the choice of kernel for 
any particular problem determines the quality of the GP metamodel. Often, Κ(𝑠𝑠, 𝑡𝑡) = Κ(𝑃𝑃), 𝑃𝑃 =
‖𝑠𝑠 − 𝑡𝑡‖. 

Although other, more complex kernels (e.g., the Matérn kernel (Xing 2015)) are available, the 
Gaussian kernel is often used for GP interpolation: 
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Κ(𝑃𝑃, 𝜏𝜏, 𝜆𝜆) = 𝜏𝜏2𝑡𝑡−
𝑟𝑟2
𝜆𝜆    

Large 𝜆𝜆 means two nearby points have similar values; small 𝜆𝜆 means less similarity between 
nearby points. Approaches for fitting a GP interpolator (i.e., choosing kernel parameters) and 
quantifying uncertainty are discussed in more detail in the IDA Paper (Haman and Miller 2022). 

A GAM is a statistical model that makes general (i.e., not strictly linear) assumptions about the 
relationship between factors and the average values of response variables, the latter of which are 
assumed to follow a non-normal distribution. Building a GAM requires making decisions on the 
functional form relating factors to responses and their interactions. Fitting the GAM requires 
choosing parameters that determine how data are smoothed and what the characteristics of the 
smoothing relationships should be (e.g., cyclical, increasing, decreasing). As an example, 
consider a GAM in which the response, 𝑦𝑦, depends on three factors 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 according to 
unknown functions 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, with an intercept α and noise ε: 

𝑦𝑦 = α + 𝑎𝑎1(𝑥𝑥1) + 𝑎𝑎2(𝑥𝑥2) + 𝑎𝑎3(𝑥𝑥3) + ε 

To build the GAM, the three functions, as well as the intercept and noise terms, must be 
estimated. Examples of how to do so are provided in the IDA Paper (Haman and Miller 2022). 

Evaluating Metamodels 

The appropriate techniques to use to evaluate whether the metamodel, once built, fits M&S 
output well enough to be useful must consider the metamodel’s ability to match both observed 
outputs (in-sample outputs) and hypothetical unobserved outputs (out-of-sample outputs). Output 
splitting should be employed that uses only some of the M&S responses to build the metamodel, 
and other output data not used to build the model are used to evaluate its predictive abilities. 
Generally, three sets of data will be needed: a training set for building the model; a screening set 
that augments the training set, as needed; and an evaluation set for determining how well the 
metamodel can predict out-of-sample responses. DOE can be used to plan for collecting the 
M&S responses composing the three data sets. 

Calibration methods and metrics analogous to those discussed subsequently for predictive 
probability validation can be used to evaluate the performance of the metamodel. If the 
metamodel’s performance is the same when evaluated against the training, screening, and 
evaluation sets, the metamodel can be used. If not, the metamodel may be overfitting (i.e., 
predicting the training set in the larger data sets) or underfitting (i.e., making imprecise 
predictions). 
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4.4.6 Model Validation Levels 

A Model Validation Level (MVL) is an objective, automatable metric scored from 0 to 9 that 
quantifies how much trust can be placed in the results of a model to represent the real world 
(Stafford et al. 2024). The MVL framework is recommended to provide a quick, interpretable 
measure of model validity and identify areas for increasing model trust. In addition, MVLs are 
recommended as a metric for quantitatively tracking model validity over time with changes in 
referent data, the scope of intended use, and/or the model itself. This can help enable a fast pace 
in a DE environment. Because the MVL framework is generalized to be applicable to a wide 
range of models, additional methods (such as those discussed in this guidebook) that are tailored 
to the specific validation scenario should be used with MVLs to provide additional insight. 

The MVL framework determines model validity based on three pillars: fidelity, referent 
authority, and scope. Fidelity is the level of consistency between a model and a referent, defined 
in the three dimensions of accuracy, repeatability, and resolution; referent authority is the 
strength of credibility of a referent’s claim to be a high-fidelity representation of reality; and 
scope is the set of inputs, outputs, assumptions, and limitations representing the mission-relevant 
system parameters, environmental conditions, constraints, and requirements and their allowable 
values. Together, these pillars ensure that the model and referent data agree, the referent is 
trustworthy, and the validity is evaluated over the entire intended use. Each pillar is addressed by 
the MVL framework using quantitative metrics, including a fidelity metric, referent authority 
level, and scope coverage metric. 

The fidelity metric is calculated at each unique input combination and is the product of an 
accuracy metric, which rates similarity in mean behavior between the model and referent, and a 
variability metric, which rates similarity in variability, where variability comprises both 
repeatability and resolution. Zero indicates no fidelity and one indicates perfect fidelity between 
the model and referent. The fidelity metric is given in Equation (4-8), where �̅�𝑥m is the model 
response mean, �̅�𝑥r is the referent mean, 𝑠𝑠m∗  is the model variability, and 𝑠𝑠r∗ is the referent 
variability. The variability, 𝑠𝑠∗, is defined in Equation (4-9), where 𝑠𝑠 is the sample standard 
deviation and δ is the resolution. Figure 4-20 illustrates the accuracy and variability metric for 
different cases. 

 
𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 = 𝑡𝑡

−12�
�̅�𝑥𝑚𝑚−�̅�𝑥𝑟𝑟
𝑠𝑠𝑟𝑟∗

�
2

𝑡𝑡
−(𝑠𝑠𝑚𝑚∗ −𝑠𝑠𝑟𝑟∗)2

𝑠𝑠𝑚𝑚∗ 𝑠𝑠𝑟𝑟∗  (4-8) 

 
𝑠𝑠∗ = �𝑠𝑠2 +

𝛿𝛿2

12
 (4-9) 
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Source: Adapted from the STAT COE Paper (Stafford et al. 2024) 

Figure 4-20. Visualizing the Accuracy and Variability Components of the Fidelity Metric 

The referent authority level of referent data is determined according to , which is derived from 
Technology Readiness Levels. In , referents that are more representative of real-world 
operational conditions receive a higher authority level. The MVL framework also enables 
multiple referents to be combined to validate the model against the body of available data instead 
of just one referent. 

Table 4-13. Referent Authority Level Scale 

Authority 
Level Relevant Referent 

1 Subject Matter Expert Judgment 

2 First Principles/Physics Predictions 

3 Component Lab Test Data 

4 Integrated Component Lab Test Data 

5 Lab-Scale System Test Data 

6 Hardware-in-the-Loop and Software-in-the-Loop Data 

7 Prototype Field Test Data 

8 Live System Test Data 

9 Operational Real-World Data 

Source: STAT COE Paper (Stafford et al. 2024) 

Scope coverage is assessed using the scope metric score between 0 and 1. The coverage metric is 
the product of 𝐶𝐶𝑉𝑉, the volume coverage metric, and 𝐶𝐶𝐷𝐷, the density coverage metric. These 
metrics are conceptually pictured in Figure 4-21, with mathematical formulations provided in the 
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STAT COE Paper, “Model Validation Levels: Methods and Implementation” (Stafford et al. 
2024). Alternate formulations allow scope coverage to be calculated when not all factors are 
continuous. 

  
Source: STAT COE Paper (Stafford et al. 2024) 

Figure 4-21. Volume Coverage Versus Density Coverage for Continuous Factors 

The metrics assessing fidelity, referent authority, and scope coverage are then quantitively 
combined across different factor combinations to produce a continuously scaled 0 to 9 score for 
the model. The MVL is interpreted by mapping the score to the authority ranking in . For 
example, an MVL of 5.1 would indicate that the model is slightly more trustworthy than lab-
scale system test data. The MVL can be no higher than the level of the most authoritative 
referent since model authority is inherited from the referent(s) used to validate it. Depending on 
the model’s intended use, different MVLs may be acceptable for different use cases (e.g., to plan 
testing versus to make an operational assessment of the system). In addition to the MVL, many 
lower-level scores can be calculated, such as average fidelity, average authority level, and 
coverage, to further understand model validity and identify areas for increasing model trust. 

For further details on the MVL framework, see the STAT COE Paper (Stafford et al. 2024). An 
R package is available upon request (contact STAT COE at AFIT.ENS.STATCOE@us.af.mil) 
that automates the MVL calculation given model data, referent data, and the scope of intended 
use (Provost et al. 2024; Jones et al. 2024). 
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5 Conclusion 

This guidebook provides project leadership and T&E practitioners with the background to 
understand when M&S can be helpful in T&E and why a rigorous VV&A is needed before using 
M&S output to support program decisions. This guidebook is not prescriptive; rather, it provides 
recommendations and best practices for how to accomplish a rigorous VV&A based on STAT. 
Where practical, this guidebook provides examples of the recommended techniques. However, 
this guidebook is not intended to serve as the definitive, exhaustive reference for all possible 
VV&A methods. Therefore, an extensive list of references is provided for practitioners to get 
further information about the recommendations made in this guidebook. 

M&S should be viewed as a tool for improving T&E and therefore systems engineering and 
capability development. The composability of M&S compared to physical articles, especially 
combined with model-based engineering, may provide significant value. By focusing on creating 
validated and accredited M&S to support T&E, DoD can implement more Agile processes, as 
recommended in the GAO Report, “Leading Practices: Iterative Cycles Enable Rapid Delivery of 
Complex, Innovative Products,” and engage in a true campaign of learning in which T&E creates 
reusable data and models to support decision making throughout the capability life cycle. 

The Office of the Director, Developmental Test, Evaluation, and Assessments (DTE&A) and the 
Office of the DOT&E intend to update this guidebook on a regular basis. Future versions will 
include more examples, including software code that can be downloaded. Additional topics 
planned for future updates include the following: 

• Detailed verification methods. 

• Additive models. 

• GP models. 

• Sensitivity analysis. 

• Surrogate methods for UQ. 

• Updated training information as the Defense Acquisition University (DAU) releases more 
credentials and courses. 

• Subjective probability distributions elicited from SMEs. 

• Federated model uncertainty propagation. 
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Appendix A: Catalog of Popular Experiment Designs 

This appendix outlines common classes of DOE designs. 

A1. Screening Designs 

full factorial design. This class of design consists of two or more factors with a discrete number 
of levels that produces runs for all possible combinations of those levels across all factors. 
Sometimes these designs are also referred to as 2k, where k represents the number of factors, and 
2 represents the number of levels. For example, consider a full factorial design that consists of 
five factors with two levels each. The number of possible combinations in this type of design is 
32 (25). 

fractional factorial design. This design is constructed by systematically choosing a fraction of 
runs from a full factorial design to start the process of efficiently determining the relationship 
between the factors and responses. Fractional factorial designs are described mathematically as  

2𝑅𝑅𝑙𝑙𝑠𝑠
𝑘𝑘−𝑝𝑝 where k refers to the number of factors, 1/2p refers to the fraction, 2 represents the number 

of levels, and Res refers to the ability of the design to reveal main effects and 2FIs. For example, 
a 25 − 1 is a ½ fraction of the 25 full factorial that requires only 16 runs. 

optimal design. This class of design is a good option whenever it is inadequate to use classical 
designs. The design is generated from computer algorithms that could be optimal with respect to 
a single criterion for a specified statistical model, but they could be suboptimal according to 
another criterion. The designs are model dependent and may require a model that the user may 
not have. The efficiency of these designs depends on the number of factors, the number of 
points, and the maximum standard error for prediction over the design space. Typically, the best 
design for an application is the design with the highest optimality efficiency. The designs have 
designations corresponding to the letters of the alphabet. The most popular are the D-optimal 
design, which is mostly used for screening, and the I- (or G-) optimal design, which is used for 
response surface. Other designs include the A-, V-, and E-optimal designs: 

• D-optimal: Minimizes the generalized variance of the model regression coefficients. 

• G-optimal: Minimizes the maximum scaled prediction variance over the design region. 

• I-optimal: Minimizes the average scaled prediction variance over the design region. 

• A-optimal: Minimizes the average variance of the regression coefficients. 

• V-optimal: Minimizes the average prediction variance over a set of specific m points of 
interest in the design region. 

• E-optimal: Maximizes the minimum eigenvalue of the information matrix. 
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definitive screening design (DSD). DSD is a class of three-level screening designs for numeric 
k > 5 that provide estimates of the main effects that are uncorrelated with 2FIs and pure quadratic 
terms. Because they are three-level designs, the quadratic effects are estimable (as discussed later 
in this section). DSDs require 2k + 1 runs. 2FIs are only partially confounded with other 2FIs as 
opposed to other screening designs in which 2FIs are completely confounded with other 2FIs. 
Pure quadratic effects are not completely confounded with interactions. 

Oehlert and Whitcomb minimum run Resolution IV (MR Res IV) design. This is a class of 
economical designs that offers savings over the 2k − p fractional factorial designs. Like all 
minimum run designs, MR Res IV designs are extremely sensitive to missing data. 

general factorial design. This is a class of design where there are a levels of factor A, b levels of 
factor B, and c levels of factor C to produce a total number of a*b*c combinations. 

A2. Response Surface Designs 

central composite design (CCD). CCD is a five-level design that consists of a combination of 2k 
factorial design or 2k − p fractional factorial design, center points, and axial points located a 
distance α from the center of the design. The 2k or 2k − p designs provide for estimating first-order 
effects, 2FIs, and lack of fit if there is replication. The center points provide for estimating pure 
error, determining the presence of curvature, and making a more uniform estimation of the 
prediction variance. The axial points provide for estimating second-order effects. The position of 
the axial points produces designs for spherical regions or designs for cuboidal regions of space. 
The CCD is the workhorse of response surface methodology. 

Box-Behnken design (BBD). BBD is a three-level design for fitting response surfaces. The 
construction technique relies on using balanced incomplete block designs and 2k factorial 
designs. The design avoids the corners of the design space in favor of edge points located at the 
mid-level (xi = 0) of the factor levels, which results in poor estimation at the factorial point 
locations. Thus, a BBD is more useful for situations in which there is no interest in predicting at 
the factorial points of the cube. Similar to a CCD, replicated runs at the center points permit a 
more uniform estimation of the prediction variance over the design space. Some BBDs with four 
or fewer factors are more economical than their equivalent CCDs. Practitioners often associate 
the BBD with cuboidal regions because of its cubic appearance; however, the BBD is a spherical 
design. BBDs require sufficient center points to improve their prediction accuracy. 

3k general factorial design. This is a three-level factorial design that allows for the estimation of 
curvature. However, this class of design is generally inadequate because it requires a large 
sample size. 
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space-filling design. This is a class of design that aims at filling the test space with as few gaps 
as possible. These deigns are suitable for computer simulations and other situations in which the 
response is deterministic. 

Draper-Lin design. This is a minimal point design for k = 3, 5, 6, 7, and 10. These designs share 
a common structure with other small composite designs. 

Koshal design. This is a class of design that uses exactly the same number of runs as the number 
of model coefficients to be estimated. 

A3. Small Response Surface Designs 

There are situations in which scarce resources—funds, time, material, manpower, equipment—
make it impractical to allow the use of traditional designs for fitting second-order models, 
especially when the number of factors k is high. For those situations, small or saturated response 
surface designs could be attractive because they are more economical. Some of the most popular 
small or saturated response surface designs and their features are listed below. 

Hoke design. This saturated, nonorthogonal, second-order design is based on irregular fractions 
of partially balanced 3k factorial designs (for k > 2). Hoke designs are suitable for cuboidal 
regions. For a small number of factors (k < 7), some of the designs are near-saturated and permit 
estimating pure error and lack of fit. Except for the quadratic terms, the best Hoke designs (for 
2 < k < 10) are comparable to BBDs and Hartley small composite designs based on the 
determinant and the trace of the information matrix. Hoke designs have better prediction 
performance and more similar sample size than Hartley small composite designs. 

Doehlert uniform shell design. Uniform shell designs (for k < 11) have an equally spaced 
distribution of points lying on concentric spherical shells. 

Roquemore hybrid design. This is a set of saturated or near-saturated second-order rotatable or 
near-rotatable designs for k = 3, 4, 5, and 6. Roquemore hybrid designs are competitive with 
CCDs based on the scaled prediction variance criteria. 

Box and Draper minimum point design. This class of design fits main effects plus interaction 
models that are optimal for k = 2 and 3 but not optimal for k > 3. 

Hartley small composite second-order design. This design is based on the idea that the cube 
portion of the composite design can be as low as a Resolution III fraction if the 2FIs are not 
aliased with other 2FIs. 
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Westlake cuboidal design. This is a second-order cuboidal design for k = 5, 7, and 9 in 22, 40, 
and 62 runs that expands the idea from Hartley. 

Rechtschaffner dummy factor design. This design adds a dummy factor, whose main effect and 
2FIs are assumed to be zero, to saturated fractions of 2k and 3k factorial Resolution V designs to 
increase the degrees of freedom for estimating pure error and preserving the balanced structure 
of the design. 

Pesotchinsky minimum point D-optimal design. This design is for k < 8. 

Lucas saturated D-optimum composite design. This saturated D-optimum composite design uses 
a subset of points from the saturated Resolution V of the Rechtschaffner dummy factor design. 

Mitchell and Bayne exchange algorithm design. This design uses an algorithm to find a k-run 
design that maximizes the information matrix |X'X| given the number of factors k, a specified 
model, and a set of candidate points. 

Notz minimal point asymptotic D-efficiency design. This is a class of 3k (for k < 7) minimal 
point second-order design with asymptotic D-efficiency of 1 relative to the number of factors k 
and the number of minimal points q. 

Draper near-saturated design. This cuboidal, near-saturated design uses the Plackett-Burman 
design for the factorial portion of Hartley’s small composite design, which is a compromise 
between a saturated small composite design and a CCD allowing degrees of freedom for 
estimating lack of fit. 

Morris augmented-pairs design. This is a class of three-level design constructed by combining 
the levels of every pair of points in a two-level first-order design to form the third level. 

Oehlert and Whitcomb minimum run Resolution V (MR Res V) design. MR Res V is a class of 
equireplicated, irregular fractions of 2k designs constructed using the D-optimality criterion 
algorithm. This design provides Resolution V designs in fewer runs when regular fraction 
designs contain significantly more degrees of freedom than are needed to estimate the model up 
to 2FIs. Judged only on a D-optimality criterion, these designs are more efficient than many 
other types. 

Haines’ San Cristobal design. This design fits a quadratic response surface for k factors that are 
restricted to nonnegative levels. 

Gilmour subset design. This is a class of three-level response surface design obtained by using 
subsets of 2k factorial designs at levels of −1 and 1 for each combination of k factors while 
holding the other q − k factors at their middle level.
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Appendix B: Policy and Guidance for M&S in T&E 

Table B-1 lists DoD policies and guidance that describe the use of M&S as part of the defense 
acquisition process. The 5000-series of policy documents pertaining to the Defense Acquisition 
System are directly relevant to this guidebook. These documents outline the principles for T&E 
within the Defense Acquisition System and how M&S can be used to inform programmatic 
decisions. DoDI 5000.61 is a key document that describes the VV&A process. MIL-STD-3022 is 
another core document that establishes a template for VV&A documents along with a framework 
for data sharing across stakeholders. Each of the policies describes roles and responsibilities but 
provides minimal detail about how to accomplish the overall program goals of using M&S to 
support system development. 

Table B-1. Top-Level DoD T&E Policy and Guidance 

Policy and 
Guidance Title Effective Date Description 

DoDD 
5000.01 

“The Defense 
Acquisition System” 

September 9, 2020 
July 28, 2022 (Change 1) 

• Provides guiding 
principles for the 
management of 
capability acquisitions. 

• Provides policies to 
support the Defense 
Acquisition System. 

DoDI 5000.02 “Operation of the 
Adaptive Acquisition 
Framework” 

January 23, 2020 
June 8, 2022 (Change 1) 

• Establishes policy and 
prescribes procedures 
for managing acquisition 
programs. 

• Assigns acquisition 
program management 
responsibilities. 

• Describes the 
responsibilities of 
principal acquisition 
officials and the purpose 
and key characteristics 
of the acquisition 
pathways. 

• Restructures defense 
acquisition guidance to 
improve process 
effectiveness and 
implement the Adaptive 
Acquisition Framework.  
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Policy and 
Guidance Title Effective Date Description 

DoDI 5000.61 “DoD Modeling and 
Simulation 
Verification, 
Validation, and 
Accreditation” 

September 17, 2024 • Establishes policy, 
assigns responsibilities, 
and prescribes 
procedures for the 
VV&A of models, 
simulations, distributed 
simulations, and 
associated data. 

• Establishes the basis for 
credible M&S across 
DoD. 

DoDI 5000.70 “Management of DoD 
Modeling and 
Simulation (M&S) 
Activities” 

May 10, 2012 
October 15, 2018 (Change 3) 

• Implements DoDD 
5000.59, which was 
canceled and 
incorporated into DoDI 
5000.97. 

• Assigns responsibilities 
for the DoD M&S 
Steering Committee. 

• Establishes the Director, 
DoD M&S Coordination 
Office. 

• Extends discovery 
metadata policy to key 
DoD M&S tools, data, 
services, data assets, 
models, and simulations. 

DoDI 5000.88 “Engineering of 
Defense Systems” 

November 18, 2020 Establishes policy, assigns 
responsibilities, and 
provides procedures to 
implement engineering of 
defense systems. 

DoDI 5000.97 “Digital Engineering” December 21, 2023 Establishes policy, assigns 
responsibilities, and 
provides procedures for 
implementing and using 
DE in the development and 
sustainment of defense 
systems. 
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Policy and 
Guidance Title Effective Date Description 

DoDI 5000.98 “Operational Test 
and Evaluation and 
Live Fire Test and 
Evaluation” 

December 9, 2024 • Establishes policy, 
assigns responsibilities, 
and prescribes 
procedures for OT&E 
and LFT&E of DoD 
systems and services 
acquired via the 
Defense Acquisition 
System or via other 
nonstandard acquisition 
systems. 

• Supersedes information 
regarding OT&E and 
LFT&E located in DoDI 
5000.89. 

DoDM 
5000.100 

“Test and Evaluation 
Master Plans and 
Test and Evaluation 
Strategies” 

December 9, 2024 Implements policy, assigns 
responsibilities, and 
provides procedures for 
developing OT&E and 
LFT&E input to the TEMP, 
a T&E strategy, or an 
equivalent product for DoD 
systems and services 
acquired via the Defense 
Acquisition System or via 
other nonstandard 
acquisition systems. 

DoDM 
5000.102 

“Modeling and 
Simulation 
Verification, 
Validation, and 
Accreditation for 
Operational Test and 
Evaluation and Live 
Fire Test and 
Evaluation” 

December 9, 2024 Implements policy, assigns 
responsibilities, and 
provides procedures for 
VV&A of M&S tools critical 
to meeting the OT&E and 
LFT&E objectives of DoD 
systems and services 
acquired via the Defense 
Acquisition System or via 
other nonstandard 
acquisition systems. 

MIL-STD-
3022 

“Documentation of 
Verification, 
Validation, and 
Accreditation (VV&A) 
for Models and 
Simulations” 

January 28, 2008 
April 5, 2012 (Change 1) 

Provides a common 
framework for 
documenting information 
produced during the VV&A 
processes by establishing 
templates for documenting 
VV&A planning, 
implementation, and 
reporting. This standard 
practice may be cited as a 
contractual requirement. 
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Policy and 
Guidance Title Effective Date Description 

M&S 
Enterprise 
Core 
Document 

“Verification, 
Validation, and 
Accreditation (VV&A) 
Recommended 
Practices Guide 
(RPG)” 

Current edition available at 
https://www.cto.mil/sea/vva_rpg/ 

Facilitates the application 
of DoD directives, policies, 
and guidelines to promote 
effective and efficient 
VV&A processes for the 
full spectrum of M&S 
products employed in DoD. 

DOT&E 
TEMP 
Guidebook 

“Director, Operational 
Test and Evaluation 
(DOT&E) Test and 
Evaluation Master 
Plan (TEMP) 
Guidebook” 

January 19, 2017 Provides guidance for the 
content of the TEMP. 

DoD M&S 
Glossary 

“Department of 
Defense Modeling 
and Simulation 
(M&S) Glossary” 

October 1, 2011 Provides definitions for 
common M&S terminology. 

 

Table B-2 lists Service-level policies and Office of the Secretary of Defense (OSD) guidance for 
implementing M&S in acquisition programs. Most of these instructions are focused on how the 
VV&A process is implemented within each Service. These documents are a good reference for 
programs to further understand Service-level requirements for M&S in T&E. The Service 
guidance documents listed in Table B-2 recommend using statistical analysis for VV&A, but 
they typically do not provide specific examples of how to apply analytical techniques. 

Table B-2. Service and OSD Policy and Guidance on VV&A of M&S for T&E 

Policy and Guidance Title Effective Date 

Department of the Army 
Pamphlet 5-11 

“Verification, Validation, and Accreditation of 
Army Models and Simulations” 

September 30, 1999 

Army Regulation 5-11 “Management of Army Modeling and 
Simulation” 

May 30, 2014 

SECNAVINST 5200.46 “Department of the Navy Modeling, Simulation, 
Verification, Validation, and Accreditation 
Management” 

March 7, 2019 

OPTEVFORINST 5000.1D “Use of Modeling and Simulation in Operational 
Test” 

March 8, 2022 

OPNAVINST 3960.15B “Validation of Navy Threat Simulators, Targets 
and Digital Threat Models and Simulations” 

July 27, 2017 

Air Force Instruction 16-1001 “Verification, Validation and Accreditation 
(VV&A)” 

April 29, 2020 

Air Force Instruction 16-1005 “Modeling & Simulation Management” June 23, 2016 

https://www.cto.mil/sea/vva_rpg/
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Policy and Guidance Title Effective Date 

OSD M&S Guidance for the 
Acquisition Workforce 

“Modeling and Simulation Guidance for the 
Acquisition Workforce” 

October 2008 
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Appendix C: Training 

Refer to Service-level policy and guidance in Appendix B for workforce development 
requirements. In addition, the following DAU credentials and courses are recommended because 
they contain content relevant to M&S development, testing, and use in T&E: 

• CTST 001: Applying Scientific Test & Analysis Techniques Credential (in development) 

• CTST 002: Cyber T&E Fundamentals Credential (in development) 

• CLE 023: Modeling and Simulation in Test and Evaluation 

• CLE 084: Models, Simulations, and Digital Engineering 

• CENG 001: Digital Engineering for DoD Consumers Credential 

For more information, see the DAU Website (https://www.dau.edu/). 

STAT methods should underpin the M&S VV&A strategy, and these topics are covered in more 
detail in Sections 2.2.1 and 4 of this guidebook. The Air Force Institute of Technology STAT 
COE provides short classes on some of these topics; course offerings can be found at 
https://www.afit.edu/STAT/page.cfm?page=1093. IDA offers online courses and interactive 
tools for test design and analysis on the IDA Test Science Website (https://testscience.org/). 

https://www.dau.edu/
https://www.afit.edu/STAT/page.cfm?page=1093
https://testscience.org/
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Acronyms 

2FI two-factor interaction 

ANOVA analysis of variance 

BBD Box-Behnken design 

CCD central composite design 

CDF cumulative distribution function 

CI confidence interval 

CM countermeasure 

COE center of excellence 

CORA correlation analysis 

DAU Defense Acquisition University 

DE digital engineering 

DoD Department of Defense 

DoDD DoD directive 

DoDI DoD instruction 

DoDM DoD manual 

DOE design of experiments 

DOT&E Director, Operational Test and Evaluation 

DSD definitive screening design 

DT developmental test 

DT&E developmental test and evaluation 

DTE&A Developmental Test, Evaluation, and Assessments 

EDA exploratory data analysis 

FDA functional data analysis 

FFF fast flexible filling 

FPCA functional principal component analysis 

GAM generalized additive model 

GAO Government Accountability Office 

GP Gaussian process 
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IDA Institute for Defense Analyses 

IDSK Integrated Decision Support Key 

IPO input-process-output 

IR infrared 

KS Kolmogorov-Smirnov 

LFT&E live fire test and evaluation 

LH Latin hypercube 

M&S modeling and simulation 

MBSE model-based systems engineering 

MIL-STD Military Standard 

MR Res IV minimum run Resolution IV 

MR Res V minimum run Resolution V 

MSWG Modeling and Simulation Working Group 

MVL Model Validation Level 

MWS missile warning system 

NIST National Institute of Standards and Technology 

OPNAVINST Office of the Chief of Naval Operations instruction 

OPTEVFORINST Operational Test and Evaluation Force instruction 

OSD Office of the Secretary of Defense 

OT&E operational test and evaluation 

OUSD(R&E) Office of the Under Secretary of Defense for Research and Engineering 

PDF probability density function 

PI prediction interval 

PM program manager 

PPV predicted probability validation 

SECNAVINST Secretary of the Navy instruction 

SME subject matter expert 

SNR signal-to-noise ratio 

SPRT sequential probability ratio test 
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STAT scientific test and analysis techniques 

T&E test and evaluation 

TEMP Test and Evaluation Master Plan 

TI tolerance interval 

UQ uncertainty quantification 

V&V verification and validation 

VV&A verification, validation, and accreditation 
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