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Executive Summary

Executive Summary

The Department of Defense (DoD) developed this guidebook to support the test and evaluation
(T&E) of autonomous systems. This guidebook addresses the novel challenges of removing or
greatly reducing involvement of human operators from DoD systems and empowering future
autonomous systems to independently act in operational environments. These challenges demand
iterative approaches for evaluating the growing capabilities of autonomous systems to ensure
trusted mission capability across complex operational environments. Therefore, this guidebook
intends to:

e Identify and explain DoD policy for autonomous systems T&E.
e Identify and explain overarching and specific challenges for autonomy T&E.
e Share guidance on methods and best practices for the full continuum of autonomy T&E.

e Provide information about tools and resources for autonomy T&E from trusted Federal
sources.

The information detailed in this guidebook focuses primarily on issues faced by independent
government test teams for planning and executing autonomous systems T&E, while also
providing insights to stakeholders who support or rely upon T&E processes. Recognizing that
autonomy is an emerging technology, this guidebook intends to provide the best information
available on current issues and will be updated as technology and methodologies evolve.

A key challenge of testing autonomous systems is that a human operator is absent from
continuous control, requiring the autonomous system to perform dynamic observe-orient-decide-
act (OODA) loop operations through a diverse range of environmental and mission conditions
and scenarios. This overarching challenge produces many complicating difficulties such as the
following:

e Requirements and the concept of operations intended for autonomous system behaviors
are often too broad or too narrow, incomplete, inconsistent, subjective, untestable, or
poorly defined.

e The safety of autonomous systems that take physical actions, independently and without
human control, shifts safety responsibilities and risks from the user to the designer,
developer, and tester.

e Data problems abound, such as realism, availability, analysis, security, and adequacy.

e Black box software or artificial intelligence components lead to unknown performance in
untested scenarios.
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¢ Human-autonomy teaming models and measures for DoD are not yet comprehensive or
mature.

To address these and many other emerging challenges, the guidebook includes the following
methods and best practices based on lessons learned for the full continuum of autonomy T&E:

e End-to-end autonomy T&E processes, based on mission and system decomposition and

iterative testing, for evidence aggregation and ongoing validation of autonomous system
trustworthiness.

e Acquisition and test strategy practices such as open system architecture; assurance case

arguments; extensive use of modeling and simulation; and live, virtual, and constructive
testing.

e Test planning and execution methods including scientific test and analysis techniques,
runtime assurance, continuous testing, adversarial testing, and cognitive instrumentation.

e Data analysis supporting model validation, quantified risks, and task-based certifications.

The guidebook leverages emerging best practices in agile and iterative testing to extend success
throughout the T&E continuum. By applying these best practices to achieve efficient, effective,
and robust developmental T&E, autonomous DoD systems will be primed for successful
operational T&E and operational employment.
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1. Introduction

1 Introduction

1.1 Purpose of This Guidebook

This guidebook provides focused guidance and recommended practices for early and
developmental test and evaluation (T&E) of autonomous systems for the purposes of the
Department of Defense (DoD), primarily for independent government developmental test and
evaluation (DT&E), while informing industry T&E as well. This guidebook addresses the novel
challenges of removing or greatly reducing the involvement of human operators from DoD
systems and empowering future autonomous systems, especially those that are artificial
intelligence (Al)-enabled, to independently act in operational environments. These challenges
demand iterative approaches for evaluating the growing capabilities of autonomous systems to
ensure trusted mission capability across complex operational environments. Therefore, this
guidebook intends to:

e Identify and explain DoD policy for autonomous systems T&E.

¢ Identify and explain overarching and specific challenges for autonomy T&E.

e Share guidance on methods and best practices for the full continuum of autonomy T&E.
¢ Provide information about tools and resources for autonomy T&E from trusted Federal

sources.

The guidebook leverages emerging best practices in agile and iterative testing to extend success
throughout the T&E continuum. By applying these best practices to achieve efficient, effective,
and robust DT&E, autonomous DoD systems will be primed for successful operational T&E and
operational employment.

111 Scope
To provide the best value to the intended audiences while limiting the length of this document,
the authors have defined this guidebook’s scope as follows:

Included in This Guidebook

e T&E policy, background, vision, challenges, methods, best practices, resources, tools,
glossary, and references relevant to autonomous systems that:

o Are developed or purposed primarily for military use.

o Are integrated systems, not limited to just hardware or software.
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o Utilize Al, both from machine learning (ML) and from complex programming rules,
to make system decisions and dictate behavior.

o Include aspects of AI T&E to understand how it drives requirements and informs and
synergizes with integrated autonomous systems T&E.

o Act independently, physically in the real world in some way, and in any domain such
as ground, water, air, or space.

o Interface, interact, and team with other systems and with human teammates.

o Use and generate data—Al training data, test data, modeling and simulation (M&S)
data, operational data and more.

o Are employed in both peacetime scenarios and high-intensity combat operations.

o Are at any point across the system life cycle, from M&S to early technology
development through contractor testing (CT), developmental testing (DT), operational
testing (OT), and post-acceptance testing during operations and sustainment.

e References and links to other documents that can expand upon this information.

Not Included in This Guidebook

e Organizational roles and responsibilities; this guidebook is not a directive.
e Automatic systems without complex rules.

e Automation of tasks for human-operated systems.

e T&E of Al that performs other roles, external to autonomous systems.

e Business systems and human decision aids that do not physically act.

e (Commercial systems not intended for military use.

Scope Summary

In summary, if the information is important to the testing or evaluation of military, integrated
autonomous systems, or if it is a product of autonomous systems T&E, it is intended for
inclusion in this guidebook.

1.1.2  Key Definitions

Autonomy and Al are sometimes used interchangeably; however, they are different concepts,
and the distinction is important. A useful starting point to compare Al and autonomy with regard
to T&E is the Al Acquisition Guidebook, which states:

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
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The following distinction between autonomy and Al should be recognized — autonomy refers to
an agent or machine being delegated to perform a task, while Al is a means to achieve that goal.

This statement makes two important distinctions. First, autonomous systems will need to be
evaluated in a system and mission context, emphasizing measures of effectiveness. The Al
contribution is evaluated primarily in terms of measures of performance. Second, the T&E of Al
techniques or models under development will include broad characterization of the performance
measures, without necessarily having an application in mind. This characterization of
performance is an important stage in making AI components understood and available for
inclusion in systems—and an important element in Al adoption. As an Al-enabled component is
joined to a platform, the evaluation needs to include a full system and mission context along with
human elements.

e Autonomy refers to an agent or machine being delegated to perform a task—capable of
independent operation without external control. Autonomous systems in DoD will need
to be evaluated in a system and mission context, emphasizing measures of effectiveness
to characterize the system’s integrated capabilities and limitations including software,
hardware, and the synergies or disconnects between them.

o Al refers to the ability of machines to perform tasks that normally require human
intelligence; Al may be an element in a system pursuing a goal. Al and ML can be used
at different stages of autonomy control and operation to aid in determining the best and
most efficient solutions for the tasks to which the system has been assigned.

e ML refers to the ability of machines to learn from data without being explicitly
programmed. ML is a subset of Al techniques. Al that does not utilize ML goes by
different names, such as expert Al rule-based Al, symbolic Al, domain ontology and
reasoning, and multi-agent planners.

Note: For a discussion of the specific challenges and guidance for the T&E of Al see the DT&E
of Al-Enabled Systems Guidebook.

1.1.3 Audience

This guidebook is intended for T&E practitioners, including program managers, test planners,
test engineers, and analysts. It is primarily intended for a government DoD audience, though
most guidance may be very useful to industry practitioners as well. The guidebook should
support the development of test strategies with applicable methodologies and the tools to
improve rigor in addressing the challenges unique to the T&E of autonomous systems. It should
also be useful for researchers into advanced T&E methods and tools to inform them about the

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
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most urgent gaps in current capabilities and where innovations are needed. Finally, this
guidebook should be informative for all professionals relying on T&E or supporting T&E, such
as requirements managers, program executives, contracting officers, systems engineers, M&S
managers, system developers, human-system interface engineers, military commanders, and
operators, by illuminating how to maximize the benefits of T&E for autonomous systems as well
as how to facilitate effective, robust, and efficient T&E best practices. The guidebook is intended
to be a living document with contributions by the entire DoD community and will adapt to
ensure that it is getting the right information to the right audience.

114 Benefits

The guidebook is intended to generate the following benefits across the DoD autonomous
systems community:

e Establishing effective, efficient, and robust autonomous military systems T&E enabling
future mission capabilities.

e Informing program managers on program and contract decision T&E risks and
opportunities.

¢ Informing autonomy systems engineering on model, simulation, and system design T&E
risks and opportunities.

¢ Informing autonomy requirements, the concept of operations (CONOPS), human systems
integration (HSI), and mission capabilities based on T&E risks and opportunities.

1.2 Evolution of Guidance from Emerging Information

One of the many challenges in developing this guidebook is that autonomous systems employ
new technologies; and new challenges, information, methods, practices, tools, and resources are
emerging at a rapid pace. Recognizing this rapidly changing technology environment, the authors
of this guidebook specifically note the following:

e This guidebook provides a snapshot of the best available information at the time of
writing and publication. Some challenges, methods, practices, tools, or resources
described herein may become outdated in the future.

e New challenges, methods, practices, tools, and resources not described in this guidebook
may have a significant impact on autonomous systems T&E and may become available in
the future.

Given this dynamic nature of autonomous systems emerging technologies, the authors and

sponsors of this guidebook intend to update and expand it on a relatively frequent basis. Every

DT&E OF AUTONOMOUS SYSTEMS GUIDEBOOK
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effort will be made to continue to provide the most useful information available at the time as
future guidebook revisions occur. Every effort will also be made to ensure that revisions are
distributed quickly to those audiences who benefit from this guidance.

1.21 Future of Autonomy Test and Evaluation

The future of autonomous systems within DoD is uncertain. The promise of many benefits from
increased employment of autonomous systems is currently driving great interest and investment
into advancing and developing future autonomous capabilities. The Trusted Al and Autonomy
Roadmap includes a future DoD autonomous system vision, as depicted in Figure 1-1.

Distribution S

What does this mean for autonomous systems?

Y TECHNOLOGY OF

Where are we across the Department? Where do we want to be?

Cross-Echelon, Resilient Autonomous Networks

of Autonomous Systems

Caollaborative and federated learning, reasoning in complex and adversarial
enviranments, collaborative real-time Al-generated courses of action with
systems that understand functions and limitations, decentralized coaordination
across VYWarfighting functions

Intelligent and Collaborative
Robotics and Human-Machine
Teams

Scalable, modular and multi-functional robaotic
systems, integrated control and human-machine
interfaces, contral and optimization of
autonamous resources

Navigation, Hyper-active
Maneuvers and Mobility
Unmanned air, ground, and maritims
platforms; multi-environment navigation
and maneuvers in complex, adversarial
environments; contested logistics

e

Multi-Object Recognition,
Targeting and Fires

Collaborative targeting and fire control, Intelligent, on-board multi-modal
threat recognition, synchrenization of complex tasks, Al-enhanced
weapon-target paring, Al-agent based decision making

Distributed, Safe, Secure Collaborative Behaviors with emphasis on Human-Machine Teaming — A framework

to integrate Al/ML solutions at multiple layers and across warfighting functions is required!

Source: Trusted Al and Autonomy Roadmap 2024
Figure 1-1. Future Autonomous Systems Roadmap Vision
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As DoD develops more advanced and capable autonomous systems, so too the T&E community
must develop and implement more advanced and capable T&E processes, methods, and
infrastructure to effectively, efficiently, and robustly perform T&E of these emerging
capabilities. Independent government T&E of autonomous systems must provide complete,
timely information and analysis to facilitate the employment of trustworthy, capable future
autonomous systems. This T&E information must accurately characterize the systems’ risks and
benefits to support the DoD mission to defend and protect the United States and its allies.
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2 Policy

The policies discussed in this section are U.S. Federal policies or DoD policies that provide
important goals, procedures, and other direction that are highly relevant to autonomous systems
and their T&E.

2.1 Federal Policies

211 Executive Order on Artificial Intelligence

Executive Order 14179, “Removing Barriers to American Leadership in Artificial Intelligence,”
is relevant to autonomous systems T&E because it provides policy for Federal goals for Al,
which may include how Al supports autonomous systems.

Overview. This Executive order (which rescinds Executive Order 14110, “Safe, Secure, and
Trustworthy Development and Use of Artificial Intelligence”) states, “It is the policy of the
United States to sustain and enhance America’s global Al dominance in order to promote human
flourishing, economic competitiveness, and national security” for the purpose of developing “Al
systems that are free from ideological bias or engineered social agendas.”

Policy Implications for Autonomous Systems T&E. The policy intends to prioritize U.S.
dominance in Al and may have future interpretations that affect the sharing of Al tools and
resources with foreign allies or organizations. It may also lead to increased focus on bias in Al
that could impact the T&E requirements for Al-enabled systems, which may include autonomous
systems.

Summary for DoD DT&E. Executive Order 14179 sets a goal for U.S. dominance in Al that
informs potential prioritization and use of Al tools and resources.

2.1.2 Responsible Military Use of Artificial Intelligence and Autonomy

The 2023 Department of State Declaration, “Political Declaration on Responsible Military Use
of Artificial Intelligence and Autonomy,” is relevant to autonomous systems T&E because it
provides internationally coordinated guidance specific to the military use of autonomous
systems.

Overview. This policy provides a normative framework addressing the use of Al and autonomy
capabilities in the military domain. To date, 58 nations have endorsed the Declaration, including
the United States, United Kingdom, France, Japan, Australia, and most Western and democratic
nations. Notably, nations including Russia, China, Iran, North Korea, India, Pakistan, and most
countries in Asia, Africa, and South America have not endorsed it.
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Policy Implications for Autonomous Systems T&E. The policy states that military use of Al
and autonomy should be ethical and responsible; must comply with international law; and should
be accountable within a responsible chain of command and control. Furthermore, their use
should carefully consider risks and benefits, which requires T&E to effectively characterize the
system across its operational environment, and should minimize unintended bias and accidents,
which requires robust T&E of the most dangerous usages in addition to the most common ones.

The policy provides that:

e These capabilities should be developed with methodologies, data sources, design
procedures, and documentation that are transparent and auditable.

e These capabilities should have explicit, well-defined uses and be designed and
engineered to fulfill those intended functions.

e Personnel who use or approve the use of these capabilities should be trained so they
sufficiently understand the capabilities and limitations of those systems in order to make
appropriate context-informed judgments on the use of those systems and to mitigate risks.

The policy directs that states should ensure that the safety, security, and effectiveness of military
Al capabilities are subject to appropriate and rigorous testing and assurance within their well-
defined uses and across their entire life cycles. For self-learning or continuously updating
military capabilities, leaders should ensure that critical safety features have not been degraded,
through processes such as monitoring. Finally, leaders should implement appropriate safeguards
to mitigate risks of failures, such as the ability to detect and avoid unintended consequences and
the ability to respond, for example by disengaging or deactivating deployed systems, when such
systems demonstrate unintended behavior.

Summary for DoD DT&E. This Declaration sets a foundation of expectations for the T&E of
Al-enabled and autonomous systems that have military use. The need for ensuring the
understanding of system capabilities and risks and characterizing system safety, security, and
effectiveness across usage contexts drives the demand for rigorous testing across the life cycle.

2.2 DoD Policies

2.21 DoD Instruction 5000.89

DoD Instruction (DoDI) 5000.89, “Test and Evaluation,” provides a baseline of T&E
requirements and best practices for the acquisition of all DoD T&E systems, which aids in
scoping autonomous systems T&E.
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Overview. This policy directs that the DoD Components will conduct developmental,
operational, and live fire T&E as part of an adequate T&E program and will integrate test
planning and test execution across stakeholders to facilitate an efficient use of data and
resources. DoDI 5000.89 also defines specific roles and responsibilities for the organizations and
personnel that manage, execute, and support DoD T&E.

Policy Implications for Autonomous Systems T&E. DoDI 5000.89 states that DT&E activities
will start when requirements are being developed to ensure that key technical requirements are
measurable, testable, and achievable; as well as provide feedback that the systems engineering
process is performing adequately. In practice, the significant inclusion of DT&E into
requirements development and systems engineering has often been minimal for traditional DoD
systems. For autonomous systems, these early program activities become much more essential
for the inclusion of DT&E expertise because the capabilities to robustly and effectively test
autonomous systems must be integrated into the design of the system. For more information on
this concept, see Section 4 of this guidebook.

DoDI 5000.89 mandates that T&E provides engineers and decision-makers with knowledge to
assist in managing risks; to measure technical progress; and to characterize operational
effectiveness, operational suitability, interoperability, survivability (including cybersecurity), and
lethality. These objectives are met by planning and executing a robust and rigorous T&E
program. For autonomous systems, these T&E needs help translate into a baseline of trust
through the establishment of the system’s trustworthiness. See Section 3 of this guidebook for
more information.

Summary for DoD DT&E. This policy sets the foundation of expectations for the T&E of all
DoD systems. The guidance set forth in DoDI 5000.89 provides a baseline for understanding
many of the challenges and best practices for autonomous systems T&E.

2.2.2 DoD Directive 3000.09

DoD Directive (DoDD) 3000.09, “Autonomy in Weapon Systems,” provides guidance and
requirements for the design, development, acquisition, testing, fielding, and employment of
autonomous and semi-autonomous weapon systems, including guided munitions that are capable
of automated target selection, that apply lethal or non-lethal, kinetic or non-kinetic, force.

Overview. DoDD 3000.09 defines an autonomous weapon system as ““a weapon system that,
once activated, can select and engage targets without further intervention by an operator” and a
semi-autonomous weapon system as “a weapon system that, once activated, is intended to only
engage individual targets or specific target groups that have been selected by an operator.”
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DoDD 3000.09 provides short examples and clarification about the applicability of the system to
the directive based on the definition.

Before a system enters formal development, the directive requires a review and approval of the
system by the Under Secretary of Defense for Policy (USD(P)), the Under Secretary of Defense
for Research and Engineering (USD(R&E)), and the Vice Chairman of the Joint Chiefs of Staff
(VCIJCS). Another review and approval by the USD(P), the Under Secretary of Defense for
Acquisition and Sustainment, and the VCJICS is required before fielding. Both reviews are
coordinated with and supported by the Autonomous Weapon Systems Working Group to ensure
system applicability, completeness, and readiness.

Policy Implications for Autonomous Systems T&E. DoDD 3000.09 provides guidelines
designed to minimize the probability and consequences of failures in autonomous and semi-
autonomous weapon systems that could lead to unintended engagements. This goal is achieved
through demonstration to the review panels of a rigorous systems engineering process that will
include hardware and software verification and validation (V&V) and realistic system
developmental and operational T&E.

Although this guidebook is a DT document, information related to OT is included for awareness
and to facilitate agile and integrated test approaches. The policy outlines specific requirements,
as excerpted in Figure 2-1, that pertain to T&E and V&V that should be considered during the
development and testing of any system that would fall under the purview of DoDD 3000.09.

Although the rigorous systems engineering process should exist for any systems developed, the
additional review and approval helps to ensure the coverage and completeness of the
development process.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
10



2. Policy

a. Systems will go through rigorous hardware and software V&V and realistic system
developmental and operational T&E, including analysis of unanticipated emergent
behavior.

(1) Hardware and software V&V will include iterative cyber T&E in accordance
with DoDI 5000.89, to verify that the weapon system is resilient and survivable in
contested cyberspace.

(2) Systems incorporating Al capabilities will go through rigorous developmental
and operational T&E to verify and validate that the Al is robust according to design
requirements.

b. T&E of systems incorporating Al capabilities will include testing to confirm that
their autonomy algorithms can be rapidly reprogrammed on new input data.

c. After initial operational T&E, as directed by the Director, Operational Test and
Evaluation (DOT&E), system data will be collected and any further changes to the system
will undergo appropriate V&V and T&E to ensure that critical safety features have not been
degraded.

(1) System software will be tested using best-available DoD means and methods to
validate that critical safety features have not been degraded. Automated testing tools, such
as modeling and simulation, will be used whenever feasible. The testing will identify any
new operating states and other relevant changes in the autonomous or semi-autonomous
weapon system.

(2) As directed by the DOT&E:

(a) Each new or revised operating state will undergo appropriate and tailored
additional T&E to characterize the system behavior in that new operating state.

(b) Changes to the state transition matrix may require whole system follow-on
operational T&E.

d. In coordination with the USD(R&E) and DOT&E, the owning Component will
provide for monitoring to identify and address when changes to the system design or
operational environment require additional T&E to provide sufficient confidence that the
system will continue to avoid unintended engagements and resist interference by
unauthorized parties.

Figure 2-1. DoD Directive 3000.09 Autonomy T&E Policy Excerpt

Summary for DoD DT&E. DoDD 3000.09 sets the expectations for the T&E of all DoD
autonomous weapon systems. The guidance set forth demands rigorous, realistic autonomous
weapon systems T&E, and although it does not explicitly apply to non-weapon autonomy, its
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principles should be applied as a best practice to all autonomous systems, not just weapon
systems.

2.2.3 DoD Data, Analytics, and Artificial Intelligence Adoption Strategy

The 2023 DoD Data, Analytics, and Al Adoption Strategy is relevant to autonomous systems
T&E because it guides DoD leaders and warfighters on how to make rapid, well-informed
decisions by expertly leveraging high-quality data, advanced analytics, and Al as part of a
continuous, outcome-driven, and user-focused development, deployment, and feedback cycle
applicable to autonomous systems.

Overview. This policy calls for an agile approach to technology development and deployment
that ensures a tight feedback loop between technology developers and users through a continuous
cycle of iteration, innovation, and improvement of solutions that enable decision advantage.
Creating effective, iterative feedback loops among developers, users, subject matter experts, and
T&E experts will ensure that capabilities are more stable, secure, ethical, and trustworthy.

Policy Implications for Autonomous Systems T&E. The policy states that sound assurance
processes for testing, evaluation, validation, and verification are imperative for providing
increased data quality and insightful analytics that are needed for improved, faster, and ethical
mission outcomes with responsible Al. The policy advocates open standard architectures,
improved data management and cybersecurity, and the design and testing of Al-enabled
solutions via robust campaigns of learning to account for different operational environments. The
policy’s top dimension of data quality is data accuracy and poses these questions: How
frequently do data values match ground truth? How is error measured, and is error tolerable for
the specified purpose? These questions beget robust, effective, and iterative T&E to underpin
data and generate useful, actionable insights.

The strategy approach embraces the need for speed, agility, learning, and responsibility—these
goals induce several of the prominent challenges for the T&E of autonomous systems, discussed
in Section 4 of this guidebook. The most noticeable challenge that this strategy generates is the
need to change the paradigms of DoD T&E from traditional “waterfall” sequential series of test
programs—with early science and technology (S&T), vendor testing, DT, OT, and follow-on
post-acceptance testing all discrete, sequenced stages—into new paradigms where T&E is a
continuum of integrated, synergistic, and overlapping S&T, CT, DT, OT, and beyond to effect
agile, iterative capability development and delivery to the warfighters.

Summary for DoD DT&E. This policy sets a strategy for agile, iterative development and
deployment of Al-enabled and data-driven systems including autonomous systems. The need for
speed and agility in learning generates demands for agile, iterative T&E as a continuum
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throughout the life cycle, extending both “left”—or earlier in development—and “right”—or
later into post-acceptance and post-fielding product improvement.

2.2.4 DoD Instruction 5000.61

DoDI 5000.61, “DoD Modeling and Simulation Verification, Validation, and Accreditation,”
provides a baseline of M&S requirements for all DoD systems, which aids in scoping
autonomous systems T&E.

Overview. DoDI 5000.61 establishes policy, assigns roles and responsibilities, and prescribes
procedures for the verification, validation, and accreditation (VV&A) of models, simulations,
distributed simulations, and associated data. DoDI 5000.61 applies to all models, simulations and
associated data developed, used, made available, or managed by the DoD Components, including
those used by non-DoD organizations to support DoD processes, products, or procedures.

Policy Implications for Autonomous Systems T&E. DoDI 5000.61 states that all models,
simulations, and associated data used to support DoD processes, products, and decisions must
undergo V&V throughout their life cycles and must be accredited for a specific intended use.
DoDI 5000.61 also provides documentation requirements for M&S VV&A and introduces
Military Standard MIL-STD-3022, which provides standardized templates to help enable the
efficient reuse of M&S data and tools.

The benefits of extensive use of M&S for very complex systems such as autonomous systems are
enormous, as discussed in Section 5.1.3 of this guidebook. The effective, robust application of
T&E best practices to the strategy, planning, execution, and analysis of autonomous systems
M&S allows efficient V&V of the M&S results and aids actual system hardware and software
T&E by exploring and understanding the system’s simulated performance throughout the
operational environment and scenario contexts. Conversely, robust autonomous systems T&E
supports efficient M&S through producing justified confidence that the M&S provides credible
insights.

Summary for DoD DT&E. This policy mandates the VV&A of all models, simulations,
distributed simulations, and associated data used to support DoD processes, products, and
decisions. The guidance set forth in DoDI 5000.61 provides a foundation for efficiently and
effectively integrating autonomous systems T&E and M&S into a coherent evaluation strategy.

2.2.5 DoD Instruction 5000.90

DoDI 5000.90, “Cybersecurity for Acquisition Decision Authorities and Program Managers,”
provides a baseline of cybersecurity activities for all DoD systems, which aids in understanding
autonomous systems cybersecurity needs for T&E.
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Overview. DoDI 5000.90 directs that program managers will assess, mitigate, and monitor
cybersecurity risks to the program information and the information system and to the platform
information technology. It mandates the identification of risks and consequences of a
cybersecurity breach, including situations where a cybersecurity breach or failure would
jeopardize military technological advantage or mission-critical functionality, including the
cybersecurity of enabling networks, supporting systems, and supply chains.

Policy Implications for Autonomous Systems T&E. DoDI 5000.90 identifies the many risks
and management needs for providing cybersecurity to DoD systems. Given that autonomous
systems will utilize integrated software to analyze information and make decisions that affect
real-world actions, the importance of successful cybersecurity takes on immensely greater
importance for these autonomous systems. Autonomous systems will have expanded
cybersecurity vulnerabilities based on their design and reliance on networks for mission-essential
information.

For T&E processes, two concepts are key:

e The need for T&E itself to use and maintain effective cybersecurity during T&E events to
protect the confidence and credibility of the T&E processes as a trusted source of truth
about the autonomous system and its capabilities.

e The effective use of T&E as an evaluation process for verifying and validating that
cybersecurity features and capabilities are effective within the autonomous system and its
larger system of systems (SoS) needed for operational effectiveness.

DoDI 5000.90 provides requirements and procedures that drive cybersecurity T&E needs. The
DoD Cyber DT&E Guidebook, Version 3.0, provides extensive details on these cybersecurity
requirements and methods. For future planning, the DoD Zero Trust Strategy provides guidance
for a shift in DoD culture on network trust that, although not yet implemented in cybersecurity
T&E guidance, should be used in planning for the cybersecurity requirements for future systems.

Summary for DoD DT&E. This policy sets the foundation for the cybersecurity requirements of
all DoD systems. The guidance set forth in DoDI 5000.90 provides a baseline for understanding
the cybersecurity needs for autonomous systems T&E.
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3 Background and Vision for Autonomous Systems T&E

This section introduces key concepts that help establish the background and emerging
developments behind many of the current challenges for the T&E of emerging technologies. This
discussion should provide new practitioners with an understanding of some underlying issues for
autonomous systems T&E to understand the reasons behind the many difficult challenges that
testers will encounter.

The first background concept, discussed in Section 3.1, emphasizes how Al and autonomy are
fundamentally distinct but have great synergistic potential in future autonomous systems.
Sections 3.2 and 3.3 examine the implications of cyber-physical systems (CPS) and how they
have driven development to an agile framework. Then, Section 3.4 introduces a view on trust
because it is a new focus for T&E, and Section 3.5 introduces the three main levels of autonomy
in relation to human interaction. Sections 3.6 and 3.7 discuss considerations for future guidance
for autonomous systems and how guidance may need to adapt in the future. Section 3.8
summarizes how T&E infrastructure is evolving for autonomous systems, and Section 3.9
outlines a future expansion of this guidebook that will include information about DoD test
ranges, tools, and test organizations with specific capabilities focused on the T&E of
autonomous systems.

3.1 Relationship Between Autonomous Systems and Artificial Intelligence

Autonomous systems and Al are distinct but closely linked. Understanding the Al role within an
autonomous system provides insight into how Al can be effectively utilized and how T&E
efforts for Al and autonomous systems can complement each other. An analogy for this
relationship is an aircraft’s flight control system: Although flight controls are tested as a
subsystem before integration, their evaluation continues as part of the fully integrated aircraft’s
flight test program. Similarly, Al must be tested before integration into an autonomous system,
but full validation occurs only when the Al is evaluated within the complete system under
realistic conditions. Additionally, just as an aircraft consists of multiple subsystems beyond flight
controls, an autonomous system integrates various components—both Al and non-Al—each
requiring appropriate testing methodologies.

A graphic example helps to illustrate the relationships between autonomous systems and the Al
components that are part of them. In Figure 3-1, a notional, simplistic functional view of an
autonomous ground vehicle is shown as an example of Al use within an autonomous system.
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Figure 3-1. Notional Example of an Autonomous System Using Al Components

The autonomous ground vehicle has several tasks that it must autonomously perform
(independently self-directed without human control). These tasks include:

e Seeing in front of and around itself.

e Hearing noises such as sirens and possibly police verbal directives.

e Communicating with surrounding bystanders.

e Monitoring its own status for fuel and other internal dynamic parameters.

e Maintaining its position on the roadway or other suitable vehicle paths.

e Avoiding obstacles such as holes, signs, barricades, vegetation, and dropped objects.

e Avoiding traffic such as other vehicles (human or autonomous), pedestrians, and animals.

e Complying with laws such as right-of-way, traffic signals, and school speed zones.

e Adapting for temporary changes such as road closures, construction, flaggers, and
outages.

e Navigating to its destination to pick up or deliver its cargo (the mission goal).
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These tasks may have a variety of enabling technologies that contribute to accomplishing the
vehicle’s overall mission safely and efficiently. As an example, an Al component utilizing ML
may be used to provide computer vision processing of onboard camera video from around the
vehicle. Another Al component might be the navigation software that optimizes the vehicle’s
routing to its destination based on roadway databases with real-time traffic updates, but this
might be an “expert AI” using complex rule-based programming rather than ML. Finally, an Al
component might be used to integrate the computer vision Al outputs with the navigation Al
outputs to decide vehicle control actions such as braking, steering, and signaling. From this
example, several Al components might integrate with other hardware and software to form a
complete, autonomous system. From a T&E perspective, each Al component can be tested
independently of the system first but then must be tested as it is integrated within the complete
autonomous system for a robust evaluation. The scope, methods, and results of the Al
components’ tests should both inform and focus the system-level tests to validate Al test results
as well as explore scenarios and interactions that are untestable below the integrated system
level.

Another concept in understanding autonomous systems and Al is the idea of varying levels of
autonomy. Autonomous systems may be empowered to execute certain tasks without any human
oversight at all, whereas other situations might require human approval or other intervention for
safety or other reasons—these are considered differing levels of autonomy and could exist
simultaneously within the same system for different tasks or situations. In the example above, the
autonomous ground vehicle might be empowered to navigate without oversight to its destination
on clear roads, but the vehicle might be designed to pull over and stop if it detects a construction
crew on the road ahead, signaling back to a control room for a human remote operator to
intervene and navigate it through a temporary, one-lane flagger situation, before returning to full
autonomous mode once it is past the construction zone. Autonomous systems T&E practitioners
must have a complete understanding of what levels of autonomy and what safeguards are in
place to fully test the system’s Al-enabled autonomy features as well as to test its safeguards and
transitions to enable effective human intervention. More details on HSI are provided in Sections
3.5,4.2.8, and 5.1.3 of this guidebook.

In the example above, note that although an ML Al is included to illustrate how it supports the
integrated autonomous system, there is no need to necessarily utilize ML for any specific
components—it is possible that an autonomous system might not use ML but still qualifies as an
autonomous system.

3.2 Cyber-Physical Systems

CPS are integrations of computation with physical processes. In CPS, physical and software
components are deeply intertwined, are able to operate on different spatial and temporal scales,
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exhibit multiple and distinct behavioral modalities, and interact with each other in ways that
change with context. As CPS, autonomous systems will require the T&E of both hardware and
software development and capabilities. The T&E practitioner must recognize that a hybrid
approach may be necessary, where some test events occur on a pace with hardware development,
but other test events occur at a higher frequency for software development. This varying
development tempo creates a challenge for the project managers and the responsible test
organizations to appropriately test features at the right times in development. The complex mix
of hardware and software components also creates a challenge for understanding how the
software and hardware interact, such that T&E events primarily intended to evaluate hardware
also account for and evaluate the software, and vice versa. Finally, the integration of these
components creates challenges for cybersecurity and its T&E because of the highly networked
nature of CPS. Overall, the autonomous system’s capabilities depend on both the hardware and
software working together with correct integration and security.

3.3 Agile Development Framework

An agile development framework is a project management approach that involves breaking the
project into phases and emphasizes continuous collaboration and improvement. This framework
has been adopted widely in DoD systems development and acquisition for software-intensive
products, utilizing the “agile” processes of near-continuous development and system integration,
with rapid, repeated software updates on a relatively short cycle of time. The InfoWorld article,
“What is CI/CD? Continuous integration and continuous delivery explained” (Sacolick 2024),
states that “continuous integration (CI) and continuous delivery (CD), also known as CI/CD,
embodies a culture and set of operating principles and practices that application development
teams use to deliver code changes both more frequently and more reliably.” The implementation
is also known as the CI/CD pipeline. An agile methodology utilizing CI/CD is a best practice for
software development and test teams to implement.

The InfoWorld article defines CI as “a coding philosophy and set of practices that drive
development teams to frequently implement small code changes and check them in to a version
control repository.”

CD picks up where CI ends by automating software delivery to multiple use sites, such as CT,
simulators, DT, and possibly OT or operators. CI and CD require continuous testing because the
objective is to deliver quality software code to the end users. Continuous testing is often
implemented as a set of automated regression, performance, and other tests that are executed in
the CI/CD pipeline.

The use of agile development frameworks with CI/CD and continuous testing will be a major
paradigm shift for DoD T&E organizations. However, the rationale for autonomous military
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systems using agile processes is sound. For example, a battlefield commander could order a
change in operational tactics to occur rapidly because of adversary threat changes, friendly asset
changes, or simply operational considerations occurring on the battlefield. By employing an agile
process, an autonomous system can respond to the commander’s directives with flexibility and
responsiveness. The development and execution of robust continuous testing processes will be a
significant challenge for DoD organizations. These processes, however, are extremely valuable
to enable highly flexible and effective autonomous systems that meet national defense

objectives. Continuous testing for autonomous systems might involve feedback mechanisms
from the operational user directly back to the system vendors and program managers to facilitate
quick and effective software solutions to support commanders’ needs in the battlespace.

3.4 Perspectives on Trust

One of the chief concerns that DoD leaders and the public have about autonomous systems,
especially Al-enabled autonomous systems, is “How can we trust the system?” This question
becomes very important because of several compounding reasons:

e Autonomous systems may operate without human control and will be empowered to act
at times without the ability for humans to intervene or have complete oversight.

e Autonomous systems will need to coordinate as a participant alongside operators,
bystanders, and team members in harmony and in support of human missions.

e DoD operational environments can be extremely varied and diverse, including weather,
terrain, lighting, temperatures, and electromagnetic interference.

e DoD operational scenarios can be incredibly complex and may involve varied threats,
numerous possible friendly forces, and a crucial need to account for noncombatants, with
diverse objectives.

¢ Environmental conditions and operational scenario features can both change rapidly.

e Autonomous systems, especially those utilizing Al, may operate as a “black box” where
the direct mapping of inputs to outputs may be impossible to fully understand.

e Adversaries will attempt to disrupt and exploit DoD systems’ operations.

e Autonomous systems may be empowered to use lethal force or otherwise endanger lives
and property during their operations.

Important concepts to understand for autonomous systems are the ideas of #rust as a personal,
human feature that will vary based on many factors, versus trustworthiness as a system feature
that can be more objectively measured. Trustworthy systems first and foremost must have
effective performance. Trustworthy systems also need safety, security, reliability, availability,
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maintainability, the ability to be understood, the ability to self-report problems the system cannot
handle, and the ability to be controlled by humans when these features are violated.

T&E plays a crucial role in establishing autonomous system trustworthiness, which helps to
establish human trust. Effective, robust T&E can characterize the autonomous system’s
performance and trustworthiness:

e When (under what conditions and scenarios) the system will perform effectively.
e When the system is ineffective, unreliable, unsafe, vulnerable, or otherwise problematic.

e  When there is uncertainty about system performance and trustworthiness.

A key feature that T&E must also address is the ability of the autonomous system to be
understood. Many humans may interact with the system in various roles: operator, maintainer,
engineer, programmer/developer, manager, teammate, ally, mission commander, operational
commander, and even the test personnel themselves. The autonomous system should have
human-system interfaces to provide each of these human perspectives with enough information
for them to do their jobs in operating, maintaining, improving, reprogramming, managing,
commanding, teaming, and testing the system effectively and efficiently. Figure 3-2 presents
three orthogonal axes showing different elements of trust in autonomous systems.

T&E provides crucial
information for
trustworthiness

man-system interfaces

EHu

_

System performance

~

Experience, education,
and training are more
important than T&E info

Figure 3-2. Factors of Trust in Autonomous Systems
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Human individual differences based on experience, education, training, personality, and other
factors also have a significant impact on trust in autonomous systems. These personal factors
vary widely and should be managed by military leadership authorities during education, training,
and operation. Practices provided in Section 5 of this guidebook address the measurement of
human personal trust in some cases, but they do not attempt to address how to improve or
optimize human individual differences beyond the features of the autonomous system under test
(SUT).

In summary, the effective and robust T&E of autonomous systems provides two crucial
categories of information to evaluate the trustworthiness of the system:

e Insight into the scenarios and conditions where the system is effective, ineffective, or
unpredictable, as well as insight into other trustworthiness factors.

e Insight into the effectiveness of the human-system interfaces needed for the numerous
human perspectives to understand the autonomous system.

The challenges discussed in Section 4 and the methods and practices presented in Section 5
address in more depth the details of many of the factors involved in autonomous system
trustworthiness and its evaluation.

3.5 Human Systems Integration Aligned to Autonomy

This section discusses the human interaction aspects of autonomous and semi-autonomous
systems, specifically detailing the levels of human involvement. Three types of human
interactions exist for varying levels of autonomy: human in the loop (HITL), human on the loop
(HOTL), and human out of the loop (HOOTL). Figure 3-3 shows a process flow diagram of
these three different types of human interaction with an Al tool. Section 5 of this guidebook
provides recommendations for the testing of each of the three levels.
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HITL systems require a human to be actively involved in the decision-making process, where the
autonomous system provides recommendations, but a human must approve or reject them. In
contrast, HOTL systems have humans monitoring the autonomous system’s performance, but
they only intervene when necessary, such as in cases of exceptions or anomalies. Finally,
HOOTL systems operate independently, without human oversight or intervention, making
decisions fully autonomously.

Human Human Human
in the Loop on the Loop out of the
(HITL) (HOTL) Loop (HOOTL)
7
Al Tool gathers, Al Tool gathers, Al Tool gathers,
processes and presents processes and presents processes and presents
information. information. information.
\_
l .’ﬂf‘l Tool selects a Al Tool makes
[ Al Tool pauses. ] decision to present to the the decision
Human. L )
Human looks at the 1 1

makes a decision. the decision.

information and [ Al Tool pauses. I { Al Tool executes }_

Human confirms (Optional) ¢

Human initiates the decision.

the execution of

Human watches

the decision. the status of the Al
Al Tool executes tool as it operates.
the decision.
[ Decision is executed. J [ Decision is executed. J [ Decision is executed.

Human Involvement Increases

Speed and Accuracy Increases

Figure 3-3. Levels of Human Interaction
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A single autonomous system may act in any or all three of these interaction levels at different
times, depending on the system design and scenario. These varying interaction levels create
challenges for T&E, in that the tester must evaluate the system both with and without human
interactions, including fail-safe mechanisms where human intervention may be expected but
absent, as well as incorporating T&E of the transitions between each of the three interaction
levels as a scenario unfolds. Appropriate and smooth transitions from HOOTL to HITL at critical
times can be key to the trustworthiness of the autonomous system.

By addressing these interaction differences and including the human element of performance
contribution along with the autonomous system performance, the T&E practitioner can develop a
more comprehensive understanding of the impacts of human-autonomy teaming (HAT) on
mission outcomes. The intended effect enables system developers to design systems that
effectively leverage the strengths of both humans and autonomy agents, ultimately leading to
improved mission outcomes.

Sections 4 and 5 discuss more details on the challenges of HAT and the best practices to address
the challenges.

3.6 Future-Proofing Guidance

Creating policy that stands the test of time is challenging. It requires the intent of the policy to be
clear and relevant even after expected—but not always predictable—advancements as well as
completely unanticipated changes in technology, the global landscape, and other critical areas.
The incredible difficulty of this task leads to a need to plan regular review and update cycles for
written policy to incorporate necessary changes to deal with unpredictable and unanticipated
changes.

Policy should focus on setting, identifying, and specifying outcomes, decisions, and processes
rather than specific metrics or measurements to direct development and drive results. Specific
metrics related to advancing technology tend to be overcome, sometimes very rapidly, leading to
policy becoming out-of-date. Metrics also face the dilemma of Goodhart’s Law: “When a
measure becomes a target, it ceases to be a good measure.”

Even more challenging than mere technological progress is the tendency for clearly established
targets or restrictions, such as a numeric compute threshold, to incentivize solutions that aim at
them or avoid them. The Center for Naval Analyses recently published a paper on Goodhart’s
Law with several examples of this challenge in defense programs (Stumborg et al. 2022).

In contrast, DoDD 3000.09 focuses on identifying key decisions or actions as thresholds—
selecting and engaging a target—and establishes a process to ensure senior-level review of
certain systems that avoids defined metrics but could readily adapt to changing technology. This
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method was successful enough that the original directive, published in 2012, was reviewed and
updated in 2023 with minimal changes. Even with the incredible advancement of Al and
autonomy in the intervening decade, the directive needed only minor changes such as adding
references to offices and requirements that did not exist in 2012, including the Chief Digital and
Artificial Intelligence Office (CDAO) and the DoD Al Ethical Principles.

These examples highlight the importance of creating flexible policy that emphasizes desired
outcomes and processes as well as regularly reviewing and updating the policy.

3.7 Evaluating Guidance in Response to Novel Capabilities

Novel capabilities and technologies have the potential to enable new ways to achieve mission
success. Some may even enable entirely new missions. However, novel capabilities may also
create or exacerbate gaps in existing policies, regulations, and guidance (referred to in this
section as “guidance”) on how to ensure that these technologies and their uses support the values
and principles of DoD. At the farthest edges, novel capabilities may even undermine or create
perverse incentives regarding existing guidance.

Missile defense provides an example of novel technology highlighting gaps and potentially
undermining the intent of existing guidance. The presence of a human for decision-making in
autonomous systems may seem to support key values and goals of DoD by having a human
review the decisions in real time to ensure the appropriate levels of human judgment. However,
the human may not actually have that effect. The short window of time for response to an
incoming munition may preclude a human operator from responding effectively. Human
operators either may be unable to intercept the munition, leading to potential loss of life or other
damage, or may blindly trust (or refuse to trust) the system, preventing the human from applying
appropriate judgment (Hawley 2017).

Another example is the current acquisitions approach to T&E. Traditional acquisition pathways
assume that a system is static after deployment and will not need additional T&E. Autonomous
systems, however, may display emergent behavior in response to changing real-world scenarios.
Ensuring that this behavior is beneficial and does not create undesired consequences must
necessarily be part of the T&E of these systems. Guidance then needs to be assessed to
determine whether programs are properly resourced, incentivized, and structured to conduct
T&E across the full life cycle, including after transitioning and fielding.

It is crucial that technological adoption and innovation not outpace written guidance in a way
that puts the deployment of novel capabilities ahead of the DoD ability to conduct T&E.
However, it is also important that a lag in guidance does not prevent the United States from
maintaining parity with or dominance over its adversaries or allow for technologies that
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undermine its values as a nation. To achieve effective and timely guidance, technologists and
developers, policymakers, and T&E communities need understanding and alignment across
stakeholders and the entire system life cycle to facilitate adaptive and responsive policy review
rather than reactive and post hoc evaluation. Policy stakeholders need to understand issues as
they arise, and developers need to communicate potential concerns to their policy colleagues.

3.8 Test and Evaluation Infrastructure Advancements

Recent and ongoing advances in Al and autonomy T&E are revolutionizing how DoD prepares
for future warfare. The Test Resource Management Center (TRMC) is at the forefront of this
transformation, investing in pioneering infrastructure to support the T&E of intelligent
unmanned systems for the joint warfighter. This research and development (R&D) effort is
aligned with four key areas within the USD(R&E) strategy: Trusted Al and Autonomy,
Integrated Network Systems-of-Systems, Advanced Computing and Software, and Human-
Machine Interfaces. This strategy marks a groundbreaking initiative within DoD, aiming to
modernize and accelerate T&E capabilities supporting these key areas. For more information, see
the DoD Critical Technology Areas Website (https://www.cto.mil/osc/critical-technologies/).

To proactively modernize DoD test infrastructure to support T&E requirements, TRMC is
focused on three core areas: developing modernized test strategies for emerging Al and human-
machine interface technologies; understanding the necessary test infrastructure services to
support these test strategies; and optimizing the application of these capabilities across the Major
Range and Test Facility Bases, mobile experiments and test environments.

Over the past 4 years, critical “test force multipliers” have been identified to accelerate Al and
human-machine interface capabilities for the joint warfighter across all warfare domains (from
the seafloor to space). These force multipliers include enhancing ML operations at the test edge;
updating Al software at mission speed; and improving big data management services to support
Al from the tactical edge to the laboratory. Efforts are also directed at achieving over-the-air
updates for evolving algorithms; improving research and engineering network speeds and
satellite communications; and implementing automated data management services to reduce
manual data processes.

Investments in scalable, on-demand digital infrastructure, supported by hybrid-cloud services,
are enabling test managers and SUTs to provide the necessary resources for rapid training,
validation, and testing of Al and human-machine interfaces. Furthermore, joint developmental
and operational test infrastructure is being developed to support realistic experimentation across
all warfare domains. Innovative research into autonomy and Al trust aims to create metrics for
validating and ensuring trustworthy machine behavior. Through these targeted efforts, DoD is set
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to revolutionize its T&E practices, enhancing readiness and resilience in an era of rapid
technological change and evolving threats.

3.9 T&E Resources: Test Ranges, Tools, and Organizations

A future expansion of this guidebook will provide information about DoD test ranges, tools, and
test organizations with specific capabilities focused on the T&E of autonomous systems. This
expansion is planned to include:
e Resources for the T&E of autonomous systems:
o DoD test labs and test ranges as well as other test facilities.
o Hardware resources: testbeds, surrogates, platforms, etc.
o Software resources: assurance cases, requirements analysis, runtime monitoring, etc.
o Simulation environments.
e Examples and case studies:
o Land autonomy.
o Sea autonomy.
o Air autonomy.
o Space autonomy.
o Swarm autonomy.

Every effort will be made to ensure that these resources are complete and up-to-date, and this
information is available to a wide audience.
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4 Challenges

Autonomous systems involve unique T&E challenges that derive from the new system features
and capabilities, such as perception, learning, reasoning, deciding, teaming, and emergent
behavior, which may include unpredictability. The autonomy T&E community, including both
researchers and practitioners, has collectively identified many specific challenges. This section
introduces the most urgent of these challenges.

One overarching challenge that potentially will require the most significant cultural changes
within the DoD T&E enterprise is the concept of a paradigm shift from the traditional, more
segregated T&E of hardware processes to a new concept of continuous testing for a system
centered on software. The second overarching challenge stems from the nature of autonomous
decision-making, which moves beyond simple condition-response mechanisms to a dynamic
cycle of observe, orient, decide, and act (OODA loop). Originally developed for military
decision-making, the OODA loop describes how information is continuously processed and how
humans or systems adapt to changing conditions and take action. Autonomous systems operate
within this framework throughout a mission, requiring T&E approaches that assess their ability
to respond to evolving situations in real time.

Section 4.1 discusses the two overarching challenges for autonomous systems T&E, and
Section 4.2 explores specific challenges posed by autonomous system capabilities. The complete
list of challenges, with direct links to each corresponding section, is provided below:

Overarching Challenge: Adapting to Developmental Test and Evaluation as a Continuum

Overarching Challenge: Test and Evaluation of the Observe-Orient-Decide-Act Loop

Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:
Specific Challenge:

Requirements

Autonomy Infrastructure
Personnel

Exploitable Vulnerabilities
Safety

Ethics

Data

Human-Autonomy Teaming
Black Box Components
Mission Evolution
Dynamic Learning

Test Adequacy and Coverage

Autonomy Integration and Interoperability
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To help organize the information, each challenge is discussed in a standardized format that
includes the specific challenge, the challenge details and risks, and an introduction of methods
and practices that address the challenge. The matrix in Section 4.3 cross-references each
challenge with each method or best practice that helps address the challenge.

4.1 Overarching Challenges for Autonomous Systems Test and Evaluation

411 Adapting to Developmental Test and Evaluation as a Continuum

The 21st century has brought a shift to DoD from traditional, primarily hardware-focused combat
systems to systems that are heavily reliant on complex software for their primary mission
functions. The acquisition system growth of a software acquisition pathway, as well as the DoD
Data, Analytics and Al Adoption Strategy, clarifies that the development, integration, fielding,
and sustainment of autonomous systems utilizing complex software and Al will have major,
lasting effects on the systems’ required T&E. These agile and iterative acquisition processes for
Al and data-driven systems, which include autonomous systems, demand critical change in how
T&E supports capability delivery and becomes agile and iterative throughout the life cycle. T&E
will extend both “left” into early development and “right” into post-acceptance and post-fielding
product improvement to ensure more complete and efficient knowledge transfer across the
engineering life cycle and more effective communication of data needs across all phases of
development. Therefore, an overarching challenge for autonomous systems T&E is adapting to
this paradigm change, which moves T&E from a serial set of activities conducted largely
independently of systems engineering and mission engineering activities to a new agile and
integrative framework focused on a campaign of learning termed developmental Test and
Evaluation as a Continuum (dTEaaC).

developmental Test and Evaluation as a Continuum

This new dTEaaC paradigm is a change:

e From the DoD T&E traditional “waterfall” process using a sequential series of test
programs with early S&T, vendor testing, DT, OT, and follow-on post-acceptance T&E
all as discrete, sequenced stages primarily supporting key milestone decisions.

e To anew agile, iterative test continuum approach where T&E provides focused and
relevant information supporting decision-making continually throughout capability
development from the earliest stage of mission engineering through operations and
sustainment:

o Starting at the earliest phases of S&T, prototyping, and experimentation to develop
and mature technology.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
28



4. Challenges

o Into traditional program-of-record DT (both contractor and government).

o Beyond fielding for systems that continue to evolve (learning and agile software).

As shown in Figure 4-1, this paradigm change involves T&E across a continuum in several

ways:

e The continuum of a system life cycle—when the T&E occurs.

e The continuum of system change frequencies—how often T&E occurs.

e The continuum of decision information needs—what needs the T&E feeds.
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[\ /o\ [\ o
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Figure 4-1. Developmental T&E as a Continuum (dTEaaC)

dTEaaC Challenge Details

The paradigm change to T&E as a continuum creates many challenges that cut across all aspects

of autonomous systems T&E.

Underlying factors. The DoD effort to continuously develop and deploy software-intensive

systems creates this challenge. Additionally, independent testers have a responsibility to provide

test information at enough speed to give timely insight into performance and trustworthiness,

without compromising the credibility of their conclusions and recommendations. The conflict

between T&E speed and T&E quality amplifies this overarching challenge.

Related risks. Failure to adapt to dTEaaC may result in:

e Delayed and more costly deployment of autonomous systems due to the lack of accurate

T&E information during development and technology maturation.
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e Reduced capabilities due to the lack of effective T&E data and conclusions in time to
inform major design, development, integration, or implementation choices.

¢ Incorrect models and invalid simulations being used for system decisions due to the lack
of truth data validating modeling accuracy and precision.

e Delayed and more costly capability deployment of updated, improved autonomous
systems due to the lack of T&E information verifying their functionality and validating
their effectiveness.

e Reduced capabilities due to the lack of effective T&E data and conclusions before
deployment, shifting risk that the updated autonomous system has deficiencies and is
ineffective or untrustworthy to the end user.

¢ Outdated autonomous system capabilities from the failure to update and evolve the
system as threats, tactics, and priorities change over time.

Affected individuals. This challenge affects everyone involved in autonomous systems; success

or failure in adapting to T&E as a continuum will be dependent on or will affect testers, program
managers, researchers, developers, engineers, maintainers, commanders, requirements staff,
contracting officers, and operators.

Trade-offs, limitations, or assumptions. T&E as a continuum becomes more challenging and

critical when:

e FEarly R&D success depends greatly on realistic T&E.

e Early T&E results lead to major changes in the requirements, CONOPS, or design.
e The continuous system updates occur more frequently (weekly or even daily).

e The continuous system updates affect safety, security, or other major capabilities.

e The understanding of the system’s capabilities, interactions, mission effectiveness, and
trustworthiness relies on the accuracy and realism of complex models and simulations.

Nine of the 13 specific challenges discussed in subsequent subsections provide more details
about the specific difficulties and risks associated with this overarching challenge.

Methods and Practices

The dTEaaC guidance addresses how data evaluation can occur across all analyses and studies;
live, virtual, and constructive (LVC) testing and M&S; and test activities while being rooted in a
common learning construct. By aligning all data-driven activities across the life cycle,
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engineering and acquisition professionals can gather data more efficiently and evaluate data

more holistically.

The dTEaaC methods are built on three core tenets:

e Deliberately Executing a Campaign of Learning: Integrating knowledge needs and

learning opportunities across the entire engineering life cycle.

o

Deliberately plans knowledge transfer through the integration of data capture and
evaluation activities across the solution life cycle.

Promotes mission validation via an agile, data-driven, and knowledge-based
framework.

Defines engineering life cycle data needs (continuous and integrated) independently
from acquisition life cycle processes (discrete and sequential).

Provides for greater understanding of S&T contextualization in the perspective of
final capability delivery.

Diminishes legacy distinctions between data types based on capture source and
transitions to data categorization based on context and data use (evaluation).

e Data-Driven Decision-Making: Embracing the assistance of decision support systems

(models, Al, data dashboards, etc.) to inform critical acquisition or make-or-buy

decisions.

o

Enables earlier discovery of opportunities and defects by providing more complete
and nuanced insights to decision-makers.

Facilitates the embedding of mission-driven requirements and contexts across all
decisions by better integrating how data are communicated.

Enables more effective data evaluation planning (including test, experimentation, and
virtual-constructive (VC) efforts) to increase the efficiency of data capture,
management, and exploitation investments.

Provides ongoing and continuing learning feedback to build better understanding over
time.

Defines requirements for the implementation of a Decision Support Evaluation
Framework and an Integrated Decision Support Key to aid in consistent decision
support system composure and use.
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e Leveraging Digital Ecosystems: Exploiting readily available digital ecosystems instead
of one-off or stand-alone tools, data repositories, and workflows.

o Employs digital engineering to integrate mission engineering, systems engineering,
and traditional T&E data into a single digital artifact or integrated knowledge
management environment.

o Integrates with ongoing digital workforce initiatives and curriculum to leverage the
skillset of industry and academic partners and the modern government workforce.

o Supports the establishment of a digital thread continuum that simplifies the
transformation for digital adopters by indicating known connections between tools,
ecosystems, and data repositories.

o Facilitates knowledge transfer by implementing multi-stakeholder, multiphase
information architectures.

The methods and best practices listed below and described in Section 5 can help address this
overarching challenge with specific practices that address dTEaaC.

e Scientific test and analysis techniques (STAT) for autonomous systems.

e Open system architecture.

e Small-scale development.

e Continuous testing.

e Code isolation.

e Assurance cases.

e LVC testing.

e Experimentation T&E.

e Surrogate platforms.

e Al model testing.

e Post-acceptance testing.

e (Cognitive instrumentation.

e Runtime assurance.

e Automatic domain randomization.

e HAT performance.

e Task-based certification.
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¢ Quantified risk and performance growth curves.

4.1.2 Test and Evaluation of the Observe-Orient-Decide-Act Loop

The OODA loop is a decision-making model used to understand how intelligent agents think,
learn, and make decisions. Understanding and testing an autonomous system’s OODA loop is
critical for understanding how an autonomous system makes decisions, predicting what to expect
when the system encounters various test scenarios, and determining the testing required to
validate the system’s decision-making quality. Failure to understand this decision-making
process and the implications of each step can result in user “surprise” by system actions and
contribute to potential user distrust of the system. Testers must evaluate OODA loop processes to
characterize them accurately and identify deficiencies to ensure autonomous system
trustworthiness for users.

Challenges of T&E of the OODA Loop for Autonomous Systems

The challenges of T&E of the OODA loop for autonomous systems are critically important
including these key issues:

e Autonomous system effectiveness depends on the correct and complete performance and
trustworthiness of all stages of the OODA loop process; therefore, system testing is
required to determine the effectiveness and deficiencies for each stage of the system’s
OODA loop.

e OODA loop component operations can be highly sensitive to inputs from other
components, which causes comprehensiveness concerns for system integration DT&E.

e Latency, noise, miscalibration, or failures in one OODA loop component can escalate
into problematic conditions throughout the rest of the process.

¢ Design and implementation of the autonomous system’s initial settings, world models,
state spaces, and other internal OODA loop software features can greatly affect
performance while being difficult to observe and measure during evaluation.

e Software components with incorrect assumptions about the system hardware capabilities
can cause limitations, complexities, and internal conflicts.

e HSI factors including cognitive workload, trust calibration, human-machine
communication, and shared situational awareness play a crucial role in the OODA loop
process. The CDAO HSI T&E of Al-Enabled Capabilities framework provides mappings
of 13 HSI concepts that align with different stages of the OODA loop.
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Example. As shown in the OODA loop model of a sample autonomous undersea vehicle
depicted in Figure 4-2, the Observe-Orient-Decide-and-Act process has many unfolding
interactions. The Observe and Act phases interact directly with the environment and external
entities. These activities also translate the physical to digital domain (Observe) or digital back to
physical domain (Ac?). Orient and Decide activities reside entirely in the digital domain and can
require intensive edge processing and computing capabilities. Understanding this cycle can help
shape the validation testing required and can frame the presentation of evidence required to
establish and communicate trust in the system to the warfighter. Simulation of the physical
domain enables the exploration and testing of hypotheses about the performance of the Orient-
Decide (world model and autonomy software) activities and capabilities, accelerating the
understanding of the system performance in a wide range of potential operating environments.
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Figure 4-2. OODA Loop Model of a Sample Autonomous Undersea Vehicle

OODA Loop Challenge Details

The challenges of the OODA loop in autonomous systems create several difficulties for T&E.
Breaking down the process’s steps can help to explain these challenges.

1. Observe

The intelligent agent observes with sensors. For the purposes of this section, sensors include
mission sensors, environmental sensors, navigation sensors, and communications receivers. The
act of observation is primarily the detection and translation of “signals” into digital information
about the environment, potential targets, and the agent itself. This observation includes the signal
processing (sampling, beam forming, filtering, etc.) required to digitally process incoming time
series data about the unfolding interaction with the world for use by the system. The observe
phase can also include human inputs and interactions through sensors or communications.
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A sensor’s capability to discriminate important signals from background noise and clutter is
dependent on the physical design of the sensor; the stability of the sensor; the digital signal
processing; the origin and nature of the signal; the transmission path and losses of the signal
through the environment; and the background noise of the environment. Sensors provide
dynamic inputs to the autonomous system, translating the agent’s view of the world into the
agent’s digital decision-making process. Therefore, the performance of the autonomous system is
tightly coupled to the sensor performance. Potential challenges during system testing include:

e Testing sensor noise and biases.

e Testing sensor resolution and calibration.

e Testing sensor performance coupling and sensitivity to environmental conditions.
e Evaluating self-monitoring of sensor performance.

e Evaluating sensor failure modes and system responses.

e Evaluating how necessary or sufficient the sensors are to inform the decisions required to
achieve mission success.

e Testing a myriad of human inputs and human-generated communications.

2. Orient

The intelligent agent uses the world model, system configuration, and mission settings to orient
observed information. Orientation includes translating sensor information into perception and
proprioception, contextualizing and prioritizing information about the environment, targets, and
system. Capabilities such as automatic target recognition, change detection, and contact fusion
bring together information from the system’s “memory” with direct observations from sensors to
draw conclusions about the meaning (significance or relevance) of these observations.

For fully autonomous systems, the system’s world model, configuration settings, and mission
plan or script place a boundary on the system “understanding” of observed information. Even in
a dynamic learning system, where feedback loops enable this understanding to evolve over the
course of the mission, the system’s orientation capability is limited by the available settings.
Potential challenges during system testing include:

e Evaluating how observation underpins perception.

e Testing diverse iterations to understand the sensitivity of mission success to initial
settings.

e Evaluating agent understanding based on initial settings, updated by system experience.
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e Evaluating whether observation without orientation leads to reflexive actions rather than
decisions.

For HITL or HOTL systems, the operator’s own awareness, training, and remote observation of
sensor data provide additional system capability to orient the data collected by sensors. Potential
challenges during system testing include:

e Evaluating sensor data display or visualization quality and latency.

e Accounting for operator experience, training, and proficiency.

e Assessing mechanisms for bidirectional human-machine communication for situational
awareness.

3. Decide

The intelligent agent uses autonomy software algorithms to decide what the system (and
subsystems) will attempt to execute. Feedback loops provide explicit guidance and control over
how observation and orientation are conducted by the system. Intelligent systems use algorithms
to plan, test, and select proposed sequences of elementary moves or behaviors. Autonomy
managers and arbiters assign resources, prioritize goals, and select between competing courses of
action. As in orientation, the choices available to the system are defined by the initial autonomy
algorithms. In some systems, humans may also have oversight of some decisions. Potential
challenges during system testing include:

¢ Planning for the complexity of decision space.

e [Evaluating the management of budgets (time, energy, power, processer cycles, memory,
etc.).

e Testing responses to off-nominal conditions.

e [Evaluating the adjudication of conflicting behaviors.

e Testing the boundaries of the behavior space.

e [Evaluating the resilience of autonomy behaviors.

e Evaluating the self-governing behaviors that shape observation and orientation.

e Efficiently and effectively managing software regression testing.

4. Act

An agent’s utility depends on its ability to act effectively on the environment, translating
decisions into physical or digital actions that achieve objectives. Potential physical actions could
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include changes to the mission profile, intentional manipulation of the environment or targets,
target engagement, initiation of communications with another agent or operator, placement of
markers, or many other events; human interaction may or may not be part of this phase
depending on the system and circumstances. Although many actions involve the system’s
physical components interacting with the environment, this step of the decision-making cycle
also encompasses nonphysical actions, such as electronic warfare, cyber operations, or digital
communication, which are equally critical to achieving mission objectives. Potential challenges
during system testing include:

¢ Planning for the physical architecture.

e Evaluating environmental limits and effects on the execution of actions (operational
envelope).

e Testing subsystem failure rates and reliability.
e Evaluating system resilience and redundancy requirements.
e Testing control system stability.

e Evaluating the integration with other systems and agents, including humans.
Related risks. Failure to address T&E of the OODA loop challenges may result in:

e Deficient autonomous system performance for unknown or unexpected reasons.
e Surprising system behaviors during operations.
e Integrated system failures and deficiencies despite “fully functioning” components.

e Overestimation of the system capabilities due to testing with only ideal component
inputs, lacking the complexity, noise, and latency of actual hardware and environments.

e Delayed and more costly development, testing, and fixes due to inadequate insight into
the root causes of deficiencies, based on the misidentification of OODA loop problems.

e Evaluations that cannot accurately characterize trustworthiness due to limited data on the
internal communications, states, priorities, and decisions of the autonomous system.

Affected individuals. T&E of the OODA loop challenges will affect all who design, integrate,
manage, evaluate, and rely on autonomous systems.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of T&E of the OODA loop for autonomous systems:
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e T&E for autonomy M&S.
e Operational modeling.

e Open system architecture.
e Continuous testing.

e Assurance cases.

e LVC testing.

e Surrogate platforms.

e Al model testing.

e Adversarial testing.

e Post-acceptance testing.

e Cognitive instrumentation.
e Test user interface.

e HAT performance.

e Automatic domain randomization.

4.2 Specific Challenges for Autonomous Systems Test and Evaluation

The list of specific challenges described in the following subsections was developed by research
and collaboration with many stakeholders and experts from both the autonomy and T&E
communities. Other lists of challenges exist that are described differently but overlap. The
specific titles are not critical if they sufficiently frame the issues.

421 Requirements Challenges

Writing effective requirements is not an easy task, as requirements definition is one of the most
important and difficult aspects of DoD acquisitions. Furthermore, issues in requirements
management are often cited as major causes of project failures. Effective system requirements
are specific, verifiable, clear, accurate, feasible, necessary, consistent, and explicit; well-
constructed requirements typically lead to well-executed system design, development, and T&E.
However, requirements are a particular problem for autonomous systems. In theory, a set of
requirements is sufficient for a third party to design and integrate an acceptable system and for a
test organization to establish a suite of tests that will evaluate whether the system meets its
requirements. In practice, however, although requirements for hardware, power, and
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communications subsystems are tractable, the requirements for autonomous behavior are often
not tractable.

Challenges of Requirements for Autonomous Systems

The challenges of requirements for autonomous systems involve the following basic issues:

e Requirements intended for autonomous system behavior are often too broad or too
narrow, incomplete, inconsistent, subjective, untestable, or poorly defined.

e Constraining the operational environment and operating conditions to simplify the
statement of accurate requirements may not allow adequate requirements specification,
especially because autonomous system development and testing require a clear
CONOPS.

o T&E of autonomous systems (like all T&E) begins with understanding the requirements;
therefore, effective, efficient, and robust T&E is nearly impossible when the autonomous
system requirements and CONOPS are problematic.

Example. Autonomous system behavior as seemingly simple as avoidance poses significant
difficulties in requirements definition, for example, where a team of systems engineers is
attempting to define a requirement that a robot arm avoid objects in its workspace while grasping
a tool.

Often, the behavior specification process devolves into one of two cases. In one case, illustrated
in Figure 4-3, the behavior may be specified in such detail that nothing is left for the autonomy
designer to accomplish. In this case, because the systems engineers creating the requirements
lack expertise in autonomy, the design is likely to include incompatible requirements (e.g., “the
arm shall not contact objects” and “the arm shall grasp the tool”) and loopholes that introduce
risk and fragility into the behavior design (e.g., “the arm shall not contact the objects listed in
reference X where reference X cannot include all the objects that may enter the environment
that should be avoided). In the other case, all aspects of autonomy may be eliminated as
“untestable” or “not specific enough” from the requirements set except at the highest level,
without providing enough information for the designer to determine what the actual autonomy
needs.
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Figure 4-3. Sample Autonomous Behavior Requirement Development Process —
Non-Autonomy Specialists

Requirements Challenge Details

The challenges of requirements for autonomous systems create several difficulties for T&E.

Underlying factors. Autonomous systems operate in uncertain environments. Therefore, the

details of the scenarios the system may encounter are fundamentally unknown at the time the
requirements are being developed—full prior knowledge is effectively impossible.

Related risks. The failure of T&E to address requirements challenges may result in:

e Ambiguity in the required autonomous behaviors. Frequently, a behavior that is desirable
under one set of circumstances is undesirable in others. Because the purpose of an
autonomous system is to decide what action to take, both the available actions and the
circumstances under which specific actions are or are not correct must be specified to
create complete and correct requirements.

e Misapplication of the autonomous system concept of employment (CONEMP) and/or its
CONOPS. The system CONOPS is defined based on the information that humans need to
know, meaning that traditionally, many concepts and assumptions are unstated because
humans can be relied on to infer them correctly without explicit reference. CONOPS
information must be made explicit for the autonomous system behavior designer and for
the autonomous systems T&E personnel.

e Adverse or unanticipated interactions between autonomous systems components—for
example, an acoustic communications array may interfere with a sonar sensor; a
navigation algorithm may make assumptions about platform mobility or the
environmental complexity that can be detected by a perception algorithm; or other
hardware specifics may dramatically affect observed behavior.
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¢ Incompatible autonomy component algorithms that make decisions and interact with each
other in unpredictable ways because the decision-making elements themselves may be
black boxes such as ML controllers or use deeply buried, undocumented optimization
criteria.

e Incompatibilities between multiple autonomous systems interacting in the same scenario.
Interoperability requires the common understanding of information being communicated
and shared goals, but the autonomy community is currently developing standards to
describe only simple task structures.

Affected individuals. Requirements challenges affect everyone involved in autonomous systems,

including testers, program managers, researchers, developers, engineers, maintainers,
commanders, requirements staff, contracting officers, and operators.

Trade-offs, limitations, or assumptions. Requirements issues are more challenging when:

e The autonomous system operating conditions and scenarios are complex, nuanced, or
difficult to accurately describe.

e System components and their interactions are numerous and varied, especially including
complex Al software with many diverse inputs and outputs.

e System interactions with other systems are complicated and nuanced.

e The autonomous system often interacts and/or coordinates with human or human-
controlled partners, managers, and/or customers.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenge of requirements for the T&E of autonomous systems:

e STAT for autonomous systems.

¢ Operational modeling.

e Open system architecture.

e Autonomy requirements and specifications.

e LVC testing.

e Formal verification methods.

e System-Theoretic Process Analysis (STPA) for autonomy.

e Human performance standards.
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e Task-based certification.

e HAT performance.

4.2.2 Autonomy Infrastructure Challenges

The T&E of autonomous systems involves multifaceted infrastructure challenges across the life
cycle of autonomous systems, as well as for their SoS.

Infrastructure Challenges for Autonomous Systems

The challenges of infrastructure for autonomous systems involve these basic issues:

e Test infrastructures, including both hardware and software tools and assets, are outdated,
having been designed for traditional or legacy systems.

e Current test ranges lack automated and sophisticated software and testing tools able to
evaluate the capabilities, behaviors, and interactions of autonomous systems and their
interconnected SoS, as well as the scalable information technology backbones such as
computational power, data storage, and analytics capabilities needed to run these
advanced tools.

e M&S tools and services to support realistic, operationally representative testing of
autonomous systems are not developed or are in their infancy.

e Infrastructure supporting the safety and human-system teaming aspects of autonomous
systems T&E are likewise not developed or are in their infancy.

e The DoD community lacks collaboration tools for effectively integrating the people who
develop, design, engineer, manage, test, maintain, and use autonomous systems.

e The few autonomy T&E capabilities that exist have been developed primarily by and for
a single, specific autonomy project or program, leading to potential test infrastructure
duplication and a lack of centralized, modernized institutional test capabilities.

Infrastructure Challenge Details

The challenges of infrastructure for autonomous systems present many issues.

Underlying factors. Autonomous systems introduce many new challenges that require test

infrastructure improvements as part of their solutions.

Related risks. The failure of T&E to address infrastructure challenges may result in delayed,
deficient, or overly costly autonomous systems acquisitions due to:
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e Lack of trustworthy, scalable, and efficient test safety solutions for autonomous systems.
e Lack of effective data management solutions for autonomous systems.

e Lack of effective characterization of systems with black box components.

e Lack of understanding of security vulnerabilities.

e Lack of effective human-system teaming evaluation.

e Delays, added costs in system development, or deficiencies due to miscommunication or
poor coordination among stakeholders.

Affected individuals. Infrastructure challenges affect those who develop, manage, evaluate, and

rely on autonomous systems.

Trade-offs, limitations, or assumptions. Infrastructure issues become more challenging when:

e The autonomous system is highly interconnected in an SoS.
e The autonomous system requires complicated human-machine teaming (HMT).

e Existing simulation capabilities are inadequate for realistically and comprehensively
evaluating the system in a mission scenario.

e The autonomous system involves sensors, datalinks, or other information inputs and
outputs at varying classification levels with separate, stove-piped support.

e New capabilities emerge faster than the infrastructure envisioned to support them.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of infrastructure for the T&E of autonomous systems:

e Open system architecture.

e LVC testing.

e STPA for autonomy.

e Runtime assurance.

e HAT performance.
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4.2.3 Personnel Challenges

A major challenge in adapting to a new technology will often be the adjustments in personnel
education, training, workforce composition, and organizational roles needed to efficiently and
effectively develop and implement the new technology capabilities.

Personnel Challenges for T&E of Autonomous Systems

The challenges of personnel for the T&E of autonomous systems generally include four basic
issues:

e DoD T&E organization personnel who have training and experience in T&E but do not
have training or experience in new autonomy technologies and capabilities.

e Personnel trained and experienced in autonomy, especially involving software and Al,
who do not have training or experience in DoD T&E.

e Personnel from other specialties who have experience in neither T&E nor autonomy but
need to understand both T&E and autonomy to effectively support or utilize autonomous
systems T&E.

e Organizational and personnel roles for the T&E of autonomous systems that are not
optimized for the efficiency and effectiveness of the test program.

Personnel Challenge Details

The personnel challenges of autonomous systems T&E are many and varied.

Underlying factors. As an emerging technology field, autonomous systems, especially those

using Al components, have few historical predecessors that require similar amounts of T&E,
hardware, software, human interface, and operational expertise to integrate seamlessly together
for a robust, efficient, and effective evaluation of system performance and trustworthiness.

Related risks. The failure to address personnel challenges may result in:
e Longer and more costly test programs due to test events that do not evaluate all relevant
autonomous system features comprehensively and efficiently.

e Reduced capabilities due to the lack of test data evaluating comprehensive integration of
hardware, software, cognitive, human interface, and mission qualities resulting in missed
design, development, or integration deficiencies.

e Delayed or reduced understanding of autonomous system capabilities due to
miscommunications or misunderstandings between key personnel specialties.
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e Shifting the risks of autonomous system trustworthiness to the end users due to the lack
of comprehensive, robust, and timely system T&E.

Affected individuals. Personnel challenges for autonomous systems T&E will affect all who

need to have more than a traditional understanding of autonomous system hardware, software,
interface, and operational features to succeed in their roles:

e Testers, who misunderstand the factors, measures, and scenarios of autonomy.

e Software and Al developers, who misinterpret the complex needs of DoD testing.
e Program managers, who misallocate or ineffectively utilize test resources.

e System developers and engineers, who fail to design efficiently testable systems.

e Commanders and operators, who misapply autonomy to operational concepts.

Trade-offs, limitations, or assumptions. Personnel issues are more challenging when:

e Software performance is highly dependent on hardware nuances, and vice versa.

e System effectiveness depends greatly on human interface effectiveness.

e System effectiveness depends on mission CONOPS and employment tactics.

e T&E success depends greatly on the specifics of integration, interfaces, or CONOPS.

e Autonomous system capabilities, interactions, or missions change rapidly.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of personnel for the T&E of autonomous systems:

e Open system architecture.

e Continuous testing.

e Assurance cases.

e LVC testing.

e Surrogate platforms.

e Al model testing.

e Post-acceptance testing.

e (Cognitive instrumentation.
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e Runtime assurance.
e Task-based certification.

e HAT performance.

4.2.4 Exploitable Vulnerabilities Challenges

The use of CPS has become widespread in commercial and personal applications, and the use of
Al in systems is expanding. The growing use of networked and Al-enabled systems by DoD,
although offering benefits, introduces new vulnerabilities for adversarial attack or exploitation.
Most autonomous DoD systems will have net-enabled or Al-enabled vulnerabilities.

Vulnerability Challenges for T&E of Autonomous Systems

The challenges of exploitable vulnerabilities for the T&E of autonomous systems generally
include these basic issues:

e Autonomous systems often rely on datalink information, which can be disrupted, denied,
or deceived, causing severe problems and demanding robust T&E to uncover.

e ML components, often used in autonomous systems, can be easily disrupted or deceived
by small but clever adversarial changes in their inputs.

e Autonomous systems may often operate with little or no human oversight, which means
that a traditional human operator “sanity check” on system information may be absent.

e Self-diagnosis and mitigation for these vulnerabilities add to the responsibilities of T&E
processes, and few proven T&E techniques for these challenges currently exist.

Exploitable Vulnerabilities Challenge Details

The exploitable vulnerabilities challenges of autonomous systems T&E are many and varied.

Underlying factors. Autonomous systems rely heavily on data from ML training, sensors,

datalinks, and software updates. This data reliance creates data vulnerabilities that adversaries or
rogue actors can degrade, deceive, exploit, or otherwise disrupt.

Related risks. The failure to address exploitable vulnerabilities challenges may result in:

e Ineffective autonomous systems in operational or realistic test conditions, despite
apparent effectiveness in early and highly controlled subsystem testing.

e Overreliance on the availability, completeness, accuracy, and security of data sources that
provide the information needed for autonomous system effectiveness.
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e Misconceptions about the level and details of human oversight needed for the
autonomous system.

e Loss of national security information or critical technology advantages due to unnoticed
or untested flaws in autonomous DoD systems.

Affected individuals. Exploitable vulnerabilities challenges for autonomous systems T&E will
affect those who provide and who employ autonomous system data:

e Testers, who mischaracterize system trustworthiness without comprehensive vulnerability
evaluations.

e Software and Al developers, who fail to mitigate data insecurity or disruption.

e Program managers, who overlook the risks of exploitable vulnerabilities.

e System developers and engineers, who over-rely on questionable data sources.

e Commanders and operators, whose missions may fail when threats expose unmitigated
vulnerabilities.

Trade-offs, limitations, or assumptions. Exploitable vulnerabilities issues are more challenging

when:

e System effectiveness is highly dependent on datalink availability and accuracy.
e Systems use ML components trained on only limited or synthetic data.
e System safety and security redundancies and mitigation processes are few.

e Autonomous system operations lack human monitoring and oversight.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of vulnerabilities for the T&E of autonomous systems:

e Continuous testing.

e Code isolation.

e Assurance cases.

e LVC testing.

e Formal verification methods.

e Al model testing.
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STPA for autonomy.

Adversarial testing.

Post-acceptance testing.

Cognitive instrumentation.

Runtime assurance.

Operational and mission-based testing.

Quantified risk and performance growth curves.

Safety Challenges

Proving that something exists is far easier than proving that something does not exist. Safety is

often an extremely difficult challenge because proving safety means proving that hazards do not

exist. This challenge becomes even greater with complex autonomous systems where an

independent layer of safety mitigation, namely a human operator, is removed.

Safety Challenges for Autonomous Systems

The challenges of safety for autonomous systems involve these basic issues:

Autonomous systems are empowered to take real physical action, independently and
without human control, and even without human user understanding, which shifts
tremendous safety responsibility from the user to the designer, developer, and tester.

Human operators spend many years gaining training and experience to avoid and mitigate
risks in systems they employ. Transferring all of that safety culture and knowledge into
autonomous system design and development is a massive, complicated endeavor.

Autonomous systems T&E may often need to occur before all system safety issues and
risks are fully understood, which adds new burdens to ensuring test safety.

Safety Challenge Details

The challenge of safety for autonomous systems was identified in the 2022 Advancements in

T&E of Autonomous Systems Workshop Report as the most critical challenge, based on

workshop surveys.

Underlying factors. Even with highly trained operators, DoD loses millions of dollars of assets

and kills multiple people every year in accidents of DoD systems. Ensuring the safety of
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autonomous systems is the first and most important step in accepting the systems’
trustworthiness.

Related risks. The failure of T&E to address safety challenges may result in:

e Autonomous systems that kill or injure DoD Service members, allies, or bystanders.

e Autonomous systems that destroy or degrade DoD, national, or allied assets or otherwise
cause unintended damage to property.

e Lack of acceptance of needed autonomous capabilities due to prominent unsafe system
operations or unsafe tests causing a loss of confidence in autonomous systems’
trustworthiness.

Affected individuals. Safety challenges affect those who have contact with autonomous systems,

including testers, maintainers, and operators.

Trade-offs, limitations, or assumptions. Safety issues are more challenging when:

e Decisions underlying routine safety are taken out of the hands and minds of operators,
who may not have a comprehensive understanding of autonomous systems’ behavior or
how to control the systems.

e Autonomous system operations or tests are in the vicinity of personnel, bystanders, or
valued assets and property.

e Human oversight of the autonomous system is remote, nontechnical, aggregated,
inconsistent, or time-lagged.

e Complex software, such as that used in autonomous systems, is designed and coded
without transparency, making robust software evaluations very difficult.

e Open-source software or commercial off-the-shelf software is used to save time and
costs, despite limited evidence of its safety-significant functions and robustness.

o A “fly-fix-fly” approach is used in development and testing, where safety failures, rather
than being proactively addressed, are fixed only after they occur.

e A “fail fast” culture of impatience in development results in autonomous systems with
fragile solutions that fail in safety-critical ways.

e Safety monitors and solutions are added to the autonomous system after initial
development rather than being integrated from the start.
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Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenge of safety for the T&E of autonomous systems:

e STAT for autonomous systems.

e Operational modeling.

e Open system architecture.

e Autonomy requirements and specifications.

e Code isolation.

e Assurance cases.

e LVC testing.

e Surrogate platforms.

e Formal verification methods.

e STPA for autonomy.

¢ Runtime assurance.

e HAT performance.

e Automatic domain randomization.

e Automated outlier search and boundary testing.

e Failure path testing.

e Task-based certification.

e Operational and mission-based testing.

¢ Quantified risk and performance growth curves.

4.2.6 Ethics Challenges

Autonomous DoD systems will generally have some form of Al empowered to perform tasks
traditionally carried out by human operators. One concern is the idea that human operators are
accountable for their actions and are taught and trained to act responsibly in accordance with
human laws and moral codes. To address this concern, DoD published five Al Ethical Principles,
as outlined in the May 26, 2021, Deputy Secretary of Defense Memorandum, which apply to
autonomous systems using Al components.
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Ethics Challenges for Autonomous Systems

The challenges of ethics for autonomous systems involve these basic issues:

e Ethical actions for autonomous systems are not explicitly detailed in requirements and
specifications in ways that can be empirically tested to evaluate ethical system behavior.

e Ethical principles for autonomous systems can be vague and subject to different
interpretations by various agencies and stakeholders with differing perspectives.

e The five DoD Al Ethical Principles—Responsible, Equitable, Traceable, Reliable,
Governable—have no clear and established standards for implementation, testing, or
evaluation in autonomous systems. Additionally, these principles were not intended to
address all ethical challenges posed by these systems and require further
supplementation.

Example. An autonomous system is in high demand for an upcoming combat operation, but
some expected operational conditions remain untested, and several instances of unintended
system behavior have already occurred. However, the immediate deployment of the system has
the potential to save lives. Can the system be ethically employed? It may be unclear how reliable
and governable the system is and what the responsible decision should be.

Ethics Challenge Details

The challenges of ethics for autonomous systems create several difficulties for T&E.

Underlying factors. Autonomous systems in DoD can have the potential to act in ways that risk

damage or loss of lives, assets, and trust. Their emerging acquisition and use introduce
uncertainties regarding who holds accountability for their ethical behavior. Additionally, ethics is
a widely studied field with many different theories and branches, which can lead to ethical
dilemmas and conflicting objectives.

Related risks. The failure of T&E to address ethics challenges may result in:
e Unreliable systems with uncertain or inadequate safety, security, effectiveness, or other

trustworthiness causing ethical violations of reliability expectations.

e Systems with unclear methodologies, data sources, design, or documentation causing the
misunderstanding of appropriate technology use, whether due to vendor secrecy or
excessive proprietary protections.

e Inequitable systems with biased actions that unjustly discriminate based on characteristics
of people such as race, color, religion, age, and sex.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
51



4. Challenges

e Ungovernable systems that cannot detect or avoid unintended consequences or, upon
demonstrating unintended behavior, cannot be disengaged or deactivated.

e Irresponsible use of autonomous systems due to inadequate or misinformed evaluation or
reporting, causing misunderstanding of the systems’ trustworthiness.

Affected individuals. Ethics challenges will affect all who design, integrate, manage, evaluate,

and use autonomous systems, especially:
e Testers who fail to evaluate, analyze, and report the full span of operational conditions
and scenarios where system effectiveness and trustworthiness are adequate or inadequate.

e Program managers, who misunderstand risks and trade-offs with ethical impacts based on
mistaken trustworthiness or misplaced accountability.

e Commanders and operators, who employ autonomous systems in unethical ways because
of deficient design, implementation, employment, or evaluation of systems.

Trade-offs, limitations, or assumptions. Ethics issues are more challenging when:

e The autonomous system may encounter scenarios where a single best ethical action is not
clear because of conflicting priorities and objectives.

e Unintended behaviors may be encountered in complex situations with many complicating
factors of the environment, scenario, or other circumstances.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of ethics for the T&E of autonomous systems:

e STAT for autonomous systems.

e Assurance cases.

e LVC testing.

e STPA for autonomy.

e Post-acceptance testing.

e Cognitive instrumentation.

e Runtime assurance.

e HAT performance.
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e Task-based certification.

4.2.7 Data Challenges

The use of data in the T&E of autonomous military systems, especially those incorporating Al
and ML, presents significant challenges. These challenges include managing vast amounts of
test, simulation, and operational data; ensuring data quality and accuracy; integrating diverse
data types from multiple subsystems; and managing data without established data standards.

Data Challenges for T&E of Autonomous Systems

Data challenges for the T&E of autonomous systems generally include many issues and difficult
tasks:

e Managing and storing vast amounts of data required for robust training, testing, and
validation of ML component models.
e Ensuring data coverage, quality, and accuracy.

e Providing accurate annotation and labeling of data for autonomous systems, which
requires domain-specific expertise.

e Using manual data labeling, which is often inadequate and time-consuming.

e Ensuring data security and privacy due to the sensitive nature of military operations.
e Integrating diverse data types from multiple subsystems.

¢ Handling interoperability issues arising from varying data formats and standards.

e Using real-time data processing for immediate decision-making during live tests and
experiments.

e Utilizing historical data and establishing robust data governance policies.

e Addressing data access problems, such as balancing effective data sharing and
collaboration among stakeholders with competing security or classification concerns.

e Recognizing a mismatch between the data available and the actual task.

e Realizing that data on the realistic behavior of U.S. adversaries in future conflicts is not
only unavailable but that adversary nations actively conceal data and mislead U.S.
observers on their plans, capabilities, tactics, etc.; intelligence data are inherently
uncertain.

e Analyzing test data from complex operational scenarios without an obvious optimal
solution or without established correct solutions.
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e Establishing, characterizing, or validating the credibility of synthetically generated data.

e Anticipating that industry vendors may claim that key data are proprietary and refuse to
share important data with independent government evaluators.

e Understanding that industry vendors may use unique data labeling, data formats, data
organization, and data management processes due to a lack of contracted or mandated
government data standards.

Data Challenge Details

The data challenges of autonomous systems T&E are relatively new to DoD T&E processes.

Underlying factors. Autonomous systems require large volumes of data to train, validate, and test

ML models. Realistic and diverse datasets are essential to ensure that these systems perform well
in real-world scenarios. Simulated environments, however, often fail to capture the complexity
of real-world warfare scenarios, leading to a lack of realistic data. Additionally, data on
adversary systems may be limited and may not reflect the full range of input factors across all
operating conditions. As new operational situations arise, datasets need to be updated. The
absence of data standards also creates friction in test data management.

Related risks. The failure to address data challenges may result in:
e Autonomous systems that are deficient or fail because of weak or brittle ML models,

resulting from defective training datasets.

e Systems that provide skewed or faulty results derived from ML trained on biased or non-
evaluated data.

e Poor performance in diverse situations, possibly in dramatic or unexpected ways, due to
overtraining or overtuning to one set of data.

e Ineffective autonomous systems due to misconceptions about adversary capabilities
derived from reliance on accurate adversary data, which is unavailable.

e Unknown ML component performance and robustness due to limitations in evaluating
inaccessible data.

e Inaccurate or uncertain test data characterization and conclusions due to missing,
unavailable, unused, mislabeled, or confusing data and management processes.

Affected individuals. Data challenges will affect all who design, integrate, manage, evaluate, and

rely on autonomous systems:
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e Testers, who must ensure that the datasets used for training and validation are
representative of the entire operating environment.

e System developers and integrators, who need to manage, process, and store large
volumes of data while ensuring data quality and security.

e Operators and commanders, who rely on accurate and reliable autonomous systems that
have been thoroughly tested and validated to perform in diverse operating environments.

Trade-offs, limitations, or assumptions. Data issues are more challenging when:

e Data inputs become more complex and diverse because it is harder to ensure data quality
and its accurate representation of the operating environment.

e Advanced computing, storage, and analytics capabilities are needed for real-time data
processing during live tests and experiments.

e Data security and privacy, especially for classified data, are paramount because of the
sensitive nature of military operations.

e The system relies on interoperability with joint force data using varying data formats and
standards.

e Correct annotation and labeling of data requires domain-specific expertise.
¢ Independent government testers cannot access, or duplicate key data held by vendors.

e Vendors invent their own data labels, processes, or tools and are unclear with
independent testers about how they work.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
many challenges of data for autonomous systems T&E:

e STAT for autonomous systems.

e Open system architecture.

e Continuous testing.

e Assurance cases.

e Experimentation T&E.

e Cognitive instrumentation.

e Test user interface.
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e Automatic domain randomization.

4.2.8 Human-Autonomy Teaming Challenges

HAT presents a critical challenge for the development, evaluation, and fielding of autonomous
systems. T&E of HAT involves more than verifying and validating that a system is safe, reliable,
and usable for human operators. It requires a more comprehensive evaluation than questionnaire-
based surveys of subjective user feedback. Evaluating teaming between humans and autonomous
systems requires an understanding of team structures, processes, and interdependencies in
diverse social, mission, and environmental contexts. The integration of human and autonomy
agents in a system and SoS environment poses significant T&E challenges, particularly when it
comes to assessing the human element of performance contribution to the mission.

HAT Challenges for Autonomous Systems T&E

The challenges of HAT for autonomous systems T&E involve these basic issues:

e Autonomy capabilities are often developed without robust internal logic for sharing
authority, responsibility, and accountability with human teammates.

e The CONOPS for autonomous systems mission execution, including robust HAT, is
difficult to envision and mature without an autonomy legacy to learn from (e.g., existing
autonomy operators, historic autonomy battles).

e The complexity of human-autonomy interactions is daunting because of the need to
consider multiple variables, such as human decision-making, autonomy agent
performance, and the dynamic exchange of information between them.

e Autonomy agents can behave differently in various scenarios, making it difficult to
predict and evaluate their performance. This variability can lead to inconsistent or
unforeseen human-autonomy interactions, further complicating the evaluation process.

e SoS interdependencies cause problems that are difficult to uncover because individual
component performance can affect both human and system behaviors. Evaluating the
impact of HAT on mission outcomes requires considering these interdependencies and
the potential cascading effects of errors or failures.

e Human factors solutions for HAT, such as oversight, teammate interfaces, and even
documentation, are immature for DoD autonomy applications and difficult to leverage
from other commercial domains.

e [Evaluating human factors and their impact on mission outcomes is essential but
challenging because a human operator’s cognitive load with autonomous systems can
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dramatically change at the system and SoS levels, potentially leading to changes in
decision-making, situational awareness, and overall performance.

e Autonomous systems involve many levels and types of risk that affect humans from
many different perspectives and with different roles.

e Current metrics and assessment strategies rely on single-use test cases that do not account
for combinations of humans and machines to perform as partners or determine how to
measure team effectiveness.

e Reliable human-performance measures are necessary for evaluating and contrasting
potential autonomy solutions, but there are often limited autonomy-development
resources for measuring and designing for human performance. Traditional measures,
such as reaction time or accuracy, may not be sufficient to capture the nuances of human
performance in a complex, dynamic SoS environment. Scaling these measures for SoS
evaluation is achievable but time-consuming and resource extensive.

e T&E interfaces and instrumentation with autonomous systems are often lacking
comprehensive clarity into system status, priorities, actions, and control, which constrains
the evaluation of how competing designs trade off human, autonomy, and HAT
performance.

HAT Challenge Details

The challenges of HAT for autonomous systems present many issues.

Underlying factors. Traditionally, users of DoD systems have strategized, planned, executed, and

created lessons learned for future improvement in operations by coordinating and collaborating
as human operators with expert knowledge of their systems. This paradigm is destroyed by the
introduction of autonomous systems without traditional operators—that is, systems that cannot
coordinate and collaborate for strategy, tactics, and improvements on a mission-by-mission
basis; these autonomous systems are unable to communicate with, understand, or explain
detailed concepts to other operators. Until these advanced capabilities emerge, current and near-
future human operators will be teaming and accumulating expertise with less complex, but still
highly novel, autonomous teammates. These first-generation HATs may eventually remake
operator communities, lessons learned, and improvement strategies that will drive future
autonomy development. For the near term, however, many risks related to HAT may jeopardize
autonomous systems’ mission success.

Related risks. The failure of T&E to address HAT challenges may result in:
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e Misalignment between human expectations for the autonomous system and its actual
capabilities, degrading trust calibration and potentially leading to deficient behaviors and
downstream system failures.

e Ineffective communication, coordination, or cooperation between autonomous systems
and the humans or systems that interact with them.

e Improperly prioritized or miscommunicated system data that focuses only on the
autonomous system’s data needs, neglecting the human user’s or teammate’s needs,
which can increase operator stress and frustration and potentially overwhelm a person in
critical situations.

o Unoptimized control over the autonomous system, including excessive or insufficient
autonomy or human involvement, which can lead to issues with safety; security;
efficiency; or misaligned responsibility, authority, and accountability.

e Lack of situation perception by the system regarding its own current or future actions; a
failure by the autonomous system to sense or anticipate its human teammates’ actions and
intentions; or a lack of awareness by the humans regarding their own actions in the
context of the HAT.

e Dangers to bystanders or other non-teammates of the system.

e Failure to understand the system’s degradation and failure modes, as well as the human’s
failure modes, leading to incorrect task assignments; deficient system behaviors; or
overwhelming the human with monitoring, control, or other tasks that exceed their
workload capacity.

e T&E events that may fail to effectively or efficiently characterize the autonomous
system’s trustworthiness and performance in mission-based scenarios.

Affected individuals. HAT challenges affect those involved in autonomous systems performance

and trustworthiness, including testers, program managers, researchers, developers, engineers,
maintainers, commanders, and operators.

Trade-offs, limitations, or assumptions. HAT issues are more challenging when:

e The autonomous system needs to coordinate or cooperate with humans to achieve
mission objectives.

e Autonomy needs to team with more than one human simultaneously.

e Autonomy needs to team with humans to take effective proactive or responsive actions,
where human response or engagement timing is important.
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e Autonomy needs to explain behaviors or reasoning to humans in real time.
e Autonomy needs to fuse hardware inputs with real-time human inputs for success.

e Autonomous systems’ projections of likely future actions must be communicated or
coordinated with human teammates.

e HAT needs change dynamically during operations.

e The CONOPS is not clear in early development, or human teaming involvement in early
development is insufficient.

e Legacy user interfaces are insufficient for HAT.

e The autonomous system will interact with untrained individuals who are unaware of the
system’s features or capabilities.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenges of HAT for the T&E of autonomous systems:

e STAT for autonomous systems.

e Operational modeling.

e Open system architecture.

e Autonomy requirements and specifications.

e Assurance cases.

e LVC testing.

e Experimentation T&E.

e Surrogate platforms.

e STPA for autonomy.

e (Cognitive instrumentation.

e Runtime assurance.

e Test user interface.

e HAT performance.

e Human performance standards.

e Task-based certification.
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e Operational and mission-based testing.

¢ Quantified risk and performance growth curves.

4.2.9 Black Box Components Challenges

ML introduces new challenges for autonomous systems, particularly when ML components
function as black boxes, obscuring the reasoning behind their outputs.

Black Box Challenges for T&E of Autonomous Systems

The challenges of black box components for the T&E of autonomous systems generally include
several issues:

e Direct evaluation of the ML internal algorithm can be impossible because the exact
patterns that the ML model uses depend on the training data, not just the design
objectives and software code.

e ML performance is not guaranteed because ML training datasets are finite and the future
is uncertain, especially in adversarial applications.

e Large, operationally representative data samples, needed to train ML effectively, are
difficult to obtain, especially for foreign adversary combat applications.

e Large, complex software algorithms can also be nearly impossible to analyze in a
comprehensive and robust way, even if they do not utilize ML.

Example. In an autonomous vehicle, a computer vision component with black box ML might
have unclear reasons why it can or cannot recognize a “stop sign,” potentially causing the vehicle
to trigger a “stop” command anytime it perceives a certain shade of red, regardless of shape or
orientation, or some other common but insufficient features.

Black Box Challenge Details

The black box challenges of autonomous systems T&E are largely new to DoD T&E processes.

Underlying factors. ML components are not explicitly programmed by the designers; instead,

they rely on well-designed algorithmic models and data model selection and tuning by the ML
engineers, along with large, highly representative training datasets for the application of interest.
Consequently, uncertainties arise regarding the data’s representativeness and how well the model
was selected, both of which can be measured statistically only by extensive testing. The
understanding of other complex software may pose different but equally intractable problems.

Related risks. The failure to address black box challenges may result in:
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¢ Unknown autonomous system performance in untested situations.

e Poor characterization of the operational envelope and edge cases.

e Reduced ability to appropriately generate test cases from test sampling methods.
e Surprising failures or deficiencies based on bugs in untested software.

e Overconfidence in performance due to the overfitting of ML components

e Unreliable performance when training data are limited, inadequate, or missing.
¢ A mismatch of ML model capability with the actual system task.

e Outputs from ML models that cannot be easily interpreted.

e Susceptibility of ML models to manipulation through adversarial data inputs.

¢ Emergent, unpredictable system behavior when new situations occur.

Affected individuals. Black box challenges will affect all who design, integrate, manage,

evaluate, and rely on autonomous systems:

e Testers, who may mischaracterize system performance because of software test
limitations.

e Software and Al teams, who inadequately design and integrate software components.

e Program managers, who misunderstand component risks and limitations.

e System developers, who apply inadequate software integration and safeguards.

e Commanders and operators, who over- or under-rely on software trustworthiness.

Trade-offs, limitations, or assumptions. Black box issues are more challenging when:

e The task to which the software component applies is highly complex and dynamic.
e The software task success depends greatly on the effectiveness of human interfaces.
e The ML data inputs are highly variable and complicated.

e The ML training dataset is not large enough or fully operationally representative across
all input factors, scenarios, and other characteristics.

e The autonomous system is highly reliant on the software component for effectiveness.

e Software component inputs, scenarios, tasks, or desired outputs change rapidly.
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Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
black box challenges for the T&E of autonomous systems:

e Open system architecture.

e Continuous testing.

e Assurance cases.

e LVC testing.

e Al model testing.

e Adversarial testing.

e Post-acceptance testing.

e (Cognitive instrumentation.

¢ Runtime assurance.

e Automated outlier search and boundary testing.

4.2.10 Mission Evolution Challenges

At times, the operational capability needs for a DoD system change during the development and
acquisition process, making T&E based on original requirements and specifications somewhat
obsolete. Additionally, human operators of DoD systems can often adapt to employ their systems
in new, more efficient, and more effective ways than originally planned by using new CONOPS
or tactics. For example, the GBU-12 laser-guided bomb was originally designed and built as a
precision munition for destroying static targets such as buildings. However, as operational
situations evolved and operators needed ways to target ground-moving vehicles, they innovated
by employing the GBU-12 against these moving targets and created new techniques to do so. So
too, autonomous DoD systems will likely need future CONOPS and tactics adaptations that
change the ways they are employed. The challenge of proving the potential and the success of
autonomous systems’ adaptations, however, will likely fall on the T&E practitioners because
these systems will not continuously have human operators.

Mission Evolution Challenges for Autonomous Systems
The challenges of mission evolution for autonomous systems involve these basic issues:

e Mission capability needs evolve over time based on changes in adversary threat systems,
adversary tactics, friendly systems or tactics, and other operational priorities.
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Autonomous systems may be the only viable solutions to meet changing challenges,
which may cause the objectives, conditions, and scenarios of autonomous systems T&E

to evolve as well.

Example. An autonomous aircraft that relies on the Global Positioning System (GPS) for

navigation, originally designed for surveillance in a low-intensity conflict, might need to provide

surveillance in a high-intensity, GPS-denied conflict. Similarly, an autonomous ground vehicle

designed for use on U.S. roadways with full pavement markings may be needed for missions in

the United Kingdom, where vehicles drive on the opposite side of the road, or might be needed

to drive on unmarked roadways.

Mission Evolution Challenge Details

The challenges of mission evolution for autonomous systems create several difficulties for T&E.

Underlying factors. Warfighters have often adapted their systems and tactics to meet unexpected

challenges on the battlefield, making the best use of the assets they are given, regardless of their

original intended design purpose.

Related risks. The failure of T&E to address mission evolution challenges may result in:

Deficient or possibly exploitable autonomous systems in operational scenarios if
autonomous systems are employed in mission-evolved ways incompatible with
trustworthy effectiveness.

Added costs and delays for effective mission-evolved capabilities if overly burdensome
or outdated T&E processes are applied.

Affected individuals. Mission evolution challenges will affect all who design, integrate, manage,

evaluate, and use autonomous systems, especially:

Testers, who misstate the full span of operational conditions and scenarios where system
effectiveness and trustworthiness are adequate and inadequate, or who must retest an
autonomous system efficiently to characterize trustworthiness and performance in
mission-evolved situations.

Program managers, who misunderstand risks and trade-offs in improving, testing, and
fielding autonomous systems with necessary mission-evolution changes.

Commanders and operators, who employ autonomous systems in mission-evolved
scenarios when the systems are not viable, or who fail to employ autonomous systems in
evolved situations where the system would be effective.
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Trade-offs, limitations, or assumptions. Mission evolution issues are more challenging when:

e The mission’s operational envelope is not clearly defined, leading to a mismatch between
what developers and users at various levels (component, subsystem, system, and SoS)
expect from the system.

e Details about the conditions, configurations, scenarios, and other information for system
testing are incomplete, causing misunderstandings about system suitability across various
missions.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenge of mission evolution for the T&E of autonomous systems:

e Assurance cases.

e LVC testing.

e Adversarial testing.

e Post-acceptance testing.

e (Cognitive instrumentation.

e Runtime assurance.

4.2.11 Dynamic Learning Challenges

A long-term goal of systems using Al is the implementation of recursive self-improvement,
referred to in this guidebook as “dynamic learning” (also known as online ML). Systems with
this capability are sometimes called cognitive systems.

Dynamic Learning Challenges for Autonomous Systems

The challenges of dynamic learning for autonomous systems, though not yet widespread, may
arise in some systems and involve key issues:

e Systems using dynamic learning can modify their algorithm while deployed, so system
testing must evaluate their ability to adapt effectively during operation.

e System capabilities will change as the ML algorithm adapts, meaning that T&E results
provide only a snapshot of system performance and trustworthiness.
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Example. In an autonomous vehicle, a decision component with dynamic learning in ML might
adapt itself to avoid brown surfaces after getting stuck on downed tree branches. This adaptation,
which may be barely perceptible, would warrant evaluation by testers to determine whether the
adaptation was appropriate, as well as to evaluate its mission impact on other brown-colored
terrain.

Dynamic Learning Challenge Details

The use of dynamic learning in autonomous systems creates several difficulties for T&E.

Underlying factors. Emerging technology exists that allows certain types of ML to continuously

“learn” or adapt to improve performance without human involvement or oversight. Trustworthy
autonomous systems with dynamic learning capabilities could have significant advantages in a
rapidly changing adversarial battlespace compared with static systems that behave predictably in
response to enemy actions.

Related risks. The failure of T&E to address dynamic learning challenges may result in:
e Deficient or untrustworthy dynamic learning components being deployed in autonomous
DoD systems.

e Deficient or possibly exploitable autonomous systems in operational scenarios if dynamic
learning is not employed but could have been.

e Added costs and delays for effective dynamic learning capabilities if overly burdensome
or outdated T&E processes are applied.

e Autonomous systems with dynamic learning capabilities that “drift” away from needed
performance over time in some conditions.

e “Catastrophic forgetting” by dynamic learning capabilities that eventually replace nearly
all their initial ML training because of online learning adaptations.

Affected individuals. Dynamic learning challenges will affect all who design, integrate, manage,

evaluate, and use autonomous systems with dynamic learning components, including testers,
software and Al teams, program managers, system developers, commanders, and operators.

Trade-offs, limitations, or assumptions. Dynamic learning issues are more challenging when:

e The task to which the dynamic learning component applies is complex and nuanced.

e The dynamic learning component data inputs are highly variable and complicated.
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e The common or frequent employment situations for the autonomous system do not fully
span the range of potential operational situations, causing the dynamic learning
component to “forget” its training for rare but highly important situations.

e The autonomous system is highly reliant on the dynamic learning component for
effectiveness.

e The autonomous system cannot easily be regression tested to determine the impact of
“drift” in the dynamic learning component performance.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
challenge of dynamic learning for the T&E of autonomous systems:

e Continuous testing.

e Assurance cases.

e LVC testing.

e Al model testing.

e Adversarial testing.

e Post-acceptance testing.

e (Cognitive instrumentation.

¢ Runtime assurance.

e HAT performance.

4.2.12 Test Adequacy and Coverage Challenges

A critical question in the T&E of autonomous systems is “How will the system be tested to
characterize its performance and trustworthiness?” This question implies two issues. The first is
how to ensure test quality—adequate realism and fidelity at any individual test point. This issue
is addressed differently depending on the autonomous system’s design, CONOPS, and
implementation details.

The second issue is how to optimize fest quantity—adequate numbers of test points to provide a
robust characterization of the system. Repeating the exact same test conditions over and over,
while providing some data on the variability in the system, would not provide adequate
characterization across all conditions and scenarios in which the system could operate. A more
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useful characterization is gained by designing a test series that provides robust coverage of all
potential conditions and scenarios the system may encounter.

Coverage refers to the spectrum of input conditions under which the system is understood. It is
the sum of the input conditions and combinations that define the expected envelope of operation
where the system is expected to perform. In M&S, these conditions are referred to as the state
space. In real-world applications, it is known as the performance envelope. Test adequacy
implies that the sampling strategy applied to the testing is comprehensive and thorough across
these input conditions or, in other words, has adequate “test coverage.”

The challenges of test adequacy and coverage are not unique to autonomous systems. The
features of autonomous systems, however, cause test adequacy and coverage to be far more
difficult compared with traditional systems with human operators.

Test Adequacy and Coverage Challenges for T&E of Autonomous Systems

Adequacy and coverage challenges for the T&E of autonomous systems generally include
several issues:

e Black box components used in autonomous systems, such as ML components, may have
no underlying physics model able to consistently predict outputs, thus requiring
comprehensive system-level testing to characterize their performance.

e The quantity of factors (dimensionality of the inputs) for autonomous systems can be
extremely large, for example:

o Weather-related factors are numerous, including temperature, pressure, humidity,
cloud coverage, precipitation, illumination, winds, currents, sun angles, and visibility.

o Terrain-related factors can include vegetation, structures, elevation, obstacles, surface
composition and hardness, snow and ice, colors, and absorption or cooling.

o Background and clutter-related factors can include vehicles, pedestrians, wildlife,
bystanders, intruders, nonparticipating friendlies, and spectrum-related traffic.

o Threats and adversary potential actions may include a myriad of additional factors.

o Teammates and friendly entities may vary from none to many, with diverse roles,
communication, coordination, and cooperation needs or options.

e All the above may be combined in diverse scenarios with different quantities, distances,
frequencies and timing that, in effect, are different system inputs.

e In total, the possible conditions and scenarios the autonomous system may encounter
could easily be in the range of billions to trillions of combinations.
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Note that “coverage” as used in this document is different from the software term “code
coverage,” which refers to a measure of the degree to which the source code of a software
program is executed during a test sequence. Code coverage is an important metric for software
components, but it does not necessarily give any indication of test adequacy and completeness
for the entire autonomous system.

Test Adequacy and Coverage Challenge Details

The adequacy and coverage challenges of autonomous systems T&E include many important
details.

Underlying factors. In traditional systems with a human operator, the human observes the

conditions and scenarios, and the human adjusts the system to achieve objectives safely. In
autonomous systems, the system must perform these tasks on its own, so T&E must evaluate
these capabilities across varying conditions and scenarios.

Related risks. The failure to address adequacy and coverage challenges may result in:
e Poor autonomous system performance in diverse situations, possibly in dramatic or
unexpected ways, due to evaluation on a limited set of conditions and scenarios.

e Overestimation of the system capabilities due to testing only in ideal conditions or
baseline scenarios without complex realism.

e Delayed and more costly development, testing, and fixes due to inadequate insight into
the root causes of deficiencies, based on piecemeal performance testing rather than on
comprehensive evaluation that accurately characterizes trustworthiness.

e Inefficient use of resources due to poorly designed tests.

Affected individuals. Test adequacy and coverage challenges will affect all who design,

integrate, manage, evaluate, and rely on autonomous systems:

e Testers, who must evaluate the autonomous system across the complete operating
environment in a myriad of scenarios.

e System developers and integrators, who need to understand the many factors involved in
system operations and evaluation and ensure that system development accounts for these
various situations.

e Operators and commanders, who rely on accurate and reliable autonomous systems that
have been thoroughly tested and validated to perform in diverse operating environments.
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Trade-offs, limitations, or assumptions. Test adequacy and coverage issues are more challenging

when:

e Testing multiple conditions and scenarios is costly and time-consuming.

e The autonomous system’s performance is sensitive to small changes in conditions or
inputs.

e The CONOPS was not developed early on, leading to system development without a
realistic understanding of the conditions and scenarios of operations.

e All potentially relevant conditions and scenarios affecting system trustworthiness were
not identified and planned for early in the life cycle.

e Input variables are identified at too high or too low of a degree or level.

e M&S of the full set of operational conditions and scenarios is unavailable or unrealistic in
some respects or otherwise limited.

e STAT is not used in test planning and test design to optimize test coverage efficiently.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the
many challenges of test adequacy and coverage for autonomous systems T&E:

e STAT for autonomous systems.

e T&E for autonomy M&S.

e Continuous testing.

e Assurance cases.

e LVC testing.

e Experimentation T&E.

e Formal verification methods.

e STPA for autonomy.

e Post-acceptance testing.

¢ Runtime assurance.

e Automatic domain randomization.

e Automated outlier search and boundary testing.
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e Failure path testing.
e Operational and mission-based testing.

¢ (Quantified risk and performance growth curves.

4.2.13 Autonomy Integration and Interoperability Challenges

The integration of autonomous systems, including those powered by AI/ML, into larger systems
presents significant challenges. This section explores these challenges, specifically focusing on
the complexities of integrating AI/ML autonomy subsystems along with ensuring interoperability
within the joint force. Interoperability is more than just information exchange; it is the ability to
act together coherently, effectively, and efficiently to achieve tactical, operational, and strategic
objectives. This challenge includes the integration of systems, processes, procedures,
organizations, and missions in appropriately stressed operational environments over the system’s
life cycle.

Integration and Interoperability Challenges for Autonomous Systems

The challenges of integration and interoperability for autonomous systems involve these issues:

e Autonomous systems extend the scope of integration T&E by adding functions, which
were traditionally performed by a human operator, that must be evaluated.

e Autonomous systems likewise extend the scope of interoperability T&E by requiring that
compatibility and teaming be tested between independently developed autonomous and
traditional systems.

Example. An autonomous vehicle may need to effectively integrate pre-mission intelligence on
adversary threats with real-time sensor inputs from radar, infrared, visual, electronic, and
datalink threat information to prioritize its mission objectives and manage mission risk. The
same vehicle may need to seamlessly synchronize its actions with friendly teammates to divide
and conquer team objectives or to simultaneously overwhelm adversary defenses.

Integration and Interoperability Challenge Details

The challenges of integration and interoperability for autonomous systems present many issues.

Underlying factors. Autonomous systems are a complex combination of multiple key subsystems

that must interact correctly to operate effectively, and some of these subsystems involve very
new technology, such as Al and ML. Autonomous systems also operate within an increasingly
complex DoD operational battlespace where systems’ capabilities must combine to form
coherent SoS solutions.
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Related risks. The failure of T&E to address integration and interoperability challenges may

result in:

Autonomous systems with operational deficiencies due to subsystems that appear to
perform well separately but are ineffective or inconsistent when integrated together in a
deployed system environment.

Autonomous systems with mission limitations or drawbacks due to deficient
interoperability or poor synchronization with other autonomous or traditional systems.

Subsystems of autonomous systems that require time-consuming and costly
redevelopment or major improvements when they fail to integrate as envisioned.

Inadequate HAT (discussed further in Section 4.2.8).

Affected individuals. Integration and interoperability challenges affect those who develop,

integrate, evaluate, and rely on autonomous systems:

Testers and evaluators, who must ensure that autonomous systems function correctly
within the larger system and joint operating environment.

System integrators and developers, who need to design and implement subsystems that
can integrate seamlessly and operate reliably within broader mission packages.

Operators and commanders, who depend on the autonomous systems to perform as
expected in various operational scenarios.

Trade-offs, limitations, or assumptions. Integration and interoperability issues are more

challenging when:

The autonomous system relies upon highly variable and complex data and sensor inputs.
The autonomous system needs complicated HMT.

The system uses multiple indirect inputs from datalinks or other sources that can have
significant latency or other update and timing issues.

The autonomous system frequently changes tasks, inputs, or outputs, dynamically
affecting how its subsystems and teammates must respond.

Methods and Practices

The methods and best practices listed below and described in Section 5 can help address the

challenge of integration and interoperability for the T&E of autonomous systems:
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e STAT for autonomous systems.

e Operational modeling.

e Open system architecture.

e Autonomy requirements and specifications.
e Assurance cases.

e LVC testing.

e Experimentation T&E.

e STPA for autonomy.

¢ Runtime assurance.

e Test user interface.

e HAT performance.

e Operational and mission-based testing.

¢ Quantified risk and performance growth curves.

4.3 Mapping of Challenges to Methods and Best Practices

Table 4-1 cross-references each autonomous systems T&E challenge with each method or best
practice that helps address the challenge.
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Table 4-1. Matrix of Challenges vs. Methods

Challenges

Infrastructure

Methods

End-to-End Autonomy T&E Processes

x | T&E of the OODA Loop

x

x | Personnel

X | Exploitable Vulnerabilities

x| Black Box Components

x| Mission Evolution
x| Dynamic Learning

STAT for Autonomous Systems

x |x | T&E as a Continuum

x | % | Requirements

x | x| Safety
x | x| Ethics
x | x| Data

x | > | Human-Autonomy Teaming

x | X | Autonomy Integration and Interoperability

M&S for Autonomy T&E

x

x | x | x | Test Adequacy and Coverage

Operational Modeling

Small-Scale Development

Open System Architecture

Autonomy Requirements and Specifications

X [ X | X [ X

X | X | X | X

Continuous Testing

Code Isolation

X

Assurance Cases

LVC Testing

X | X [ X [ X
x

Experimentation T&E

Surrogate Platforms

X[ X | X | X | X [X

X | X | X | X

Formal Verification Methods

Al Model Testing

STPA for Autonomy

Adversarial Testing

Post-Acceptance Testing

Cognitive Instrumentation

Runtime Assurance

X [IX X |X[X[X|X

X [ X | X | X

X [ X | X [ X

X [ X | X | X

Test User Interface

Human-Autonomy Team Performance

X [ X | X | X

Automatic Domain Randomization

Automated Outlier Search / Boundary Testing

Failure Path Testing

Human Performance Standards

Task-Based Certification

Operational and Mission-Based Testing

Quantified Risk / Performance Growth Curves

XX [ X [X [ X [X X [X

X [ X [ X [ X
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5 Methods and Best Practices

The previous sections of this guidebook discussed the policies, background, vision, and
challenges for the T&E of autonomous systems. This section provides a collection of methods
and best practices to address these issues and challenges. The methods presented are divided into
two general groups: overarching methods and specific methods.

The overarching methods are three complementary methodologies that apply to all autonomous
systems:

e End-to-end autonomy T&E process.

e STAT for autonomous systems.

e MA&S for autonomy T&E.

Understanding these overarching methods is essential for achieving autonomous systems T&E
that is effective, efficient, and robust. The information provided in the overarching methods
sections should provide a foundational understanding for all stakeholders and offer practical
frameworks for utilizing the specific methods discussed in subsequent sections.

The specific methods are more focused practices that address the challenges in autonomy T&E.
Although not all methods apply universally, they have been categorized based on the phase of
the T&E life cycle where they provide the greatest benefit. Many methods, however, provide
benefits across multiple life cycle stages. The specific methods discussed in this section are
organized according to the following T&E life cycle phases:

e Acquisition and development strategy.

e Test strategy.

e Test planning.

e Test execution.

e Data analysis and evaluation.

Many of the methods complement each other, and their combined application can enhance the
overall effectiveness of autonomy T&E.

Each method is described to provide practitioners with a basic understanding, allowing them to
determine its applicability to their project. If a method is deemed relevant, practitioners can
explore further details for implementation using the tools and references provided.
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The discussion of each method is organized to include the following information regarding the
method’s intended use, benefits, limitations, and other considerations.

e Method description.

e Details and best practices.

e Primary outcomes and additional benefits.

e Costs, limitations, and assumptions.

e (Challenges addressed by the method.
As described earlier in this document, all lessons, methods, and tools discussed in the guidebook
are intended as a best snapshot at the present time and act as a “living” documentation of
currently used and available methods and tools for autonomous systems T&E. No claim is made
that the methods provided in the guidebook are sufficient to guarantee success nor to assert that
these represent all useful methods for autonomy T&E. Because autonomy is an emerging
technology discipline, some methods and tools have limited information available; the intent is to

expand and improve upon useful methods and tools as the capabilities for the T&E of
autonomous systems mature.

5.1 Overarching Methods for Test and Evaluation of Autonomous Systems

The overarching methods are three complementary methodologies that apply to all autonomous
systems:

e End-to-end autonomy T&E process.
e STAT for autonomous systems.
e M&S for autonomy T&E.

Understanding these overarching methods is essential for meeting the many challenges of T&E
of autonomous systems.

511 End-to-End Autonomy Test and Evaluation Process

The first overarching method for autonomous systems T&E is a framework for applying many of
the other methods in this section. This end-to-end autonomy T&E process provides a structured
approach to assess the performance and trustworthiness of autonomous systems throughout their
life cycle. Concise, basic information about the best practices, limitations, and challenges of the
end-to-end autonomy T&E process are presented first, followed by a more detailed discussion of
these concepts.
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Description of the End-to-End Autonomy T&E Process

The end-to-end autonomy T&E process:

e Is a comprehensive and iterative approach that integrates evidence from diverse sources
to build a unified assurance argument for the safe and effective operation of autonomous
systems.

e Emphasizes a holistic approach, recognizing that no single T& E method can provide
sufficient evidence to support a comprehensive assurance argument. The process
integrates various methods, including model-based analysis, simulation, formal
verification, and live testing, to assess the system’s performance across different
operational contexts.

e I[s an iterative process, allowing for continuous refinement and improvement based on the
evidence gathered from T&E activities, model-based analysis, simulation, and
operational feedback.

e Is an adaptable approach, recognizing that the specific T&E methods and their level of
emphasis may vary depending on the autonomous system’s complexity and intended use.

Details and Best Practices

Key features of the end-to-end autonomy T&E process include:

e Multiple T&E methods. The process incorporates various methods, including model-
based requirements analysis, simulation-based functional testing, context-independent
testing, processor-in-the-loop (PIL) testing, formal analysis, VC operator-in-the-loop
testing, LVC testing, live DT, OT, runtime assurance, and assurance aggregation.

e [terative testing. The process emphasizes an iterative approach, where testing starts with
small, focused experiments; uses sequential test designs; and gradually builds toward OT.

e Evidence aggregation. The process integrates evidence from different T&E methods into
a unified assurance argument that supports certification and accreditation.

e Test scope expansion. The scope of testing expands throughout the process, starting with
individual AT components and progressing to integrated assemblies and complete
autonomous platforms.

e Early test team involvement. The test team is involved early in the acquisition process,
including during requirements development, to ensure that requirements are complete,
consistent, and testable.
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Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of the end-to-end autonomy T&E process include
the following:
e Primary outcomes:

o Justified confidence in the system’s safety and effectiveness. The comprehensive and
iterative nature of the process provides a strong assurance argument for the system’s
performance.

o Reduced risk of system failures. The early identification and mitigation of potential
issues through testing help to reduce the risk of system failures in operation.

e Additional benefits:
o Improved system performance.
o Reduced development costs.
o Enhanced communication and collaboration between stakeholders.
o Increased user acceptance.

o Faster time to fielding.

Costs, Limitations, and Assumptions

The use of the end-to-end autonomy T&E process may have the following negative impacts:

e Complexity. The process can be complex and requires significant expertise to implement
effectively.

e Resource intensiveness. The process can be resource intensive, requiring significant time,
personnel, and equipment, which may differ from traditional resources.

e Data management challenges. The process generates large amounts of data that must be
effectively managed and analyzed.

Note: The benefits of this end-to-end framework are likely to greatly offset these costs by
reducing later fixes, reworks, or failures.

Tools and Resources

For more information about end-to-end autonomous systems T&E processes, see the conference
presentation, “A Holistic Look at Testing Autonomous Systems” (Scheidt 2016).
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Challenges Addressed by This Method

The end-to-end autonomy T&E process helps to address several challenges for the T&E of

autonomous systems including:

Adapting to T&E as a Continuum. The process provides a structured approach to
testing and evaluating complex systems from early experimentation and prototyping
through employment and ongoing improvements.

T&E of the OODA Loop. The process applies to dynamic autonomous systems and Al
technology components to provide evaluation of all phases of the OODA loop.

Requirements. The process links autonomy requirements through all phases of testing.

Infrastructure. The process provides a framework to maximize the efficient use of
infrastructure throughout the T&E process.

Safety. The process uses an iterative, build-up approach to reduce test safety risk and
mitigate system risk as early as possible and helps to reduce performance risks by
providing a strong assurance argument for the system’s safe and trustworthy
performance.

Data. The process emphasizes the collection and analysis of data from multiple sources.

Considerations and Details for the End-to-End Autonomy T&E Process

A variety of T&E methods can produce useful evidence of autonomy performance; however, no

single autonomy T&E method can, by itself, produce sufficient evidence to support a

comprehensive assurance argument. Test engineers should follow a test process that integrates

evidence from different sources to create a unified assurance argument. Detailed

recommendations for specific test methods are provided elsewhere in this guidebook. An

overview of the T&E methods that could be included in an autonomy T&E process is

summarized as follows:

Model-based requirements analysis: Incorporates a parametric model of the autonomy’s
expected characteristics into a system model, which is used to evaluate the expected
benefits of the yet undeveloped Al.

Simulation-based functional testing: Enables automated testing of the autonomy in a
constructive world. Using high-performance computing faster than real-time (FTRT)
simulation in the loop can examine functional performance of the autonomy under test
over trillions of scenarios.
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Context-independent testing: Involves automated source code examination to identify
autonomy inputs that cause autonomy decisions that produce unacceptable outputs.
Robustness Inside-Out Testing is one such tool that provides this capability.

PIL testing: Uses a real-time simulation to test the autonomy running on the target
computing infrastructure (CPU, RAM, network, etc.). PIL testing is used to validate the
timeliness of autonomy decisions.

Formal Analysis: Uses rigorous mathematical analysis of formal models of Al algorithms
and/or autonomy design to define performance guarantees of the algorithm or design.

VC operator-in-the-loop testing: Connects the real-time PIL test apparatus to operator
simulators to examine human-autonomy interactions including operator confidence
calibration.

LVC testing: Examines an autonomous system’s ability to operate in highly dynamic and
challenging conditions by exposing the live platform to simulated targets or threats,
providing a realistic test environment for system performance and operator decision-
making.

Live DT: Provides fully live testing on a closed track in which the autonomy stimuli are
planned and controlled by the test team.

OT: Evaluates an autonomous system’s performance by deploying it within realistic
wargame scenarios or training exercises, where it operates as intended in accordance with
the CONEMP/CONOPS while interacting with human operators and other systems.

Runtime assurance: Involves an onboard monitoring system responsible for monitoring
autonomy performance during a mission and, if necessary, preventing the autonomous
system from executing an unsafe action.

Assurance aggregation: Combines evidence from other T&E methods into a unified
assurance argument that can support certification and accreditation.
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The scope of Al used in an autonomous system may vary greatly, from simple systems that
utilize a single Al component, to platforms containing dozens of complex, interdependent Al
subcomponents. Therefore, test engineers should expect to tailor the autonomy T&E process,
selecting the test methods that are best suited to their specific autonomous SUT.

Each of the listed methods exhibits unique advantages and disadvantages that should be
considered by the test team when developing a Test and Evaluation Master Plan (TEMP). Test
tools and methods should be selected to manage the trade-off between completeness and
accuracy. Those evaluation methods that are effective at examining large numbers of diverse
circumstances can do so only because they make simplifying assumptions that sacrifice test
accuracy, whereas the most accurate tests, such as OT, are expensive, time-consuming, and
incapable of examining large numbers of circumstances.

The autonomy test process should not only include a variety of evaluation methods but also vary
the scope of the autonomy under test throughout the process. It is recommended that T&E
processes start small by focusing on the performance characterization of isolated Al components
(e.g., target detection and the camera that feeds it data) and then move on to assemblies of
integrated Al components (e.g., all perception modules required to produce platform situational
awareness), before examining complete autonomous platforms or SoS that include teams of
autonomous systems. With autonomous systems, however, integration testing is necessary but
not sufficient to determine how components or systems will work together in an operational
context or to detect all potential emergent behaviors. Comprehensive T&E must assess
interactions across varying levels of integration to uncover unintended effects that may arise only
in complex, real-world environments.

Autonomy test engineers should utilize a tailored T&E process that defines the test methods,
scope, and scale of each stage to suit the unique needs of the autonomy under test.

The reason the test team should “start small” is because the number of possible autonomy—world
interactions is unmanageably large, which effectively prohibits comprehensive system testing. It
is recommended that the test team build an assurance argument by combining evidence from an
integrated suite of test events that start with small, focused experiments and gradually build
toward OT. As shown in Figure 5-1, test engineers should start by conducting large-batch
experiments of key Al components contained within the autonomous system. Analysis of these
focused results will identify Al performance limitations and the autonomous system’s
performance envelope. Data from tests in which it is already known that the Al will fail, or easily
succeed, produces little in the way of useful evidence. The test engineer should utilize large-
batch analysis to cull the state space for successive tests, focusing on “maximum value” test
conditions for more accurate, time-consuming, and expensive high-fidelity tests. Ideally, high-
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fidelity system-level tests will confirm previous large-sample, low-fidelity results, and the test
team can begin a new cycle of testing by increasing the testing scope by adding Al components
and/or expanding the operational scope.
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Figure 5-1. Iterative Test Process Concept

High-fidelity results not matching large-batch results usually indicate a flaw in the assumptions
and/or models used in the large-batch testing. When high-fidelity results conflict, model flaws
should be identified and repaired, and regression testing should be used to correct errors in the
large-batch experiments. The test cycle shown in Figure 5-1 should be iteratively repeated,
gradually adding scope and complexity of the autonomy being tested until the entire autonomous
system is examined under sufficiently robust operational conditions and scenarios. The test
conditions examined in each stage should be derived from prior cycles, continually optimizing
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the evidence gained per test by focusing on conditions that maximize valuable information and
minimize unknowns during each subsequent test (see STAT for Autonomous Systems
(Section 5.1.2) and other sections below).

When compared with traditional system testing, the recommended process may appear to be
overly complex and cumbersome; however, done correctly, by iteratively refining models and
optimizing test conditions in earlier cycles, this process reduces unnecessary system-level tests
by ensuring that only the most valuable, high-fidelity scenarios are selected for final evaluation.
This targeted approach minimizes costs and maximizes insights while avoiding redundant full-
system tests.

Figure 5-2 provides an overview of the complete end-to-end process.
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Figure 5-2. Overview of Complete End-to-End Process

One of the key findings of the DoD Autonomy Community of Interest T&E V&V Working
Group in its Technology Investment Strategy 2015-2018 is the recognition that autonomy testing
requires involvement from the autonomy test engineer throughout the engineering life cycle,
starting with the requirements process and continuing through deployment and sustainment. The
iterative test process described in Figure 5-1 should be contained within a larger, more linear
process as shown in Figure 5-2.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
82




5. Methods and Best Practices

Formal autonomy requirements should be derived from mission requirements early in the
acquisition cycle. Autonomy requirements must define what decisions must be made by the
platform to satisfy mission requirements; what knowledge is required to make those decisions;
and the fitness criteria that can be used to evaluate the effectiveness of a decision and the scope
of the operating conditions under which those decisions are to be made. Formal autonomy
requirements will be used to define test parameters throughout the test process, so it is vital that
the test team be available at inception to ensure that requirements are complete, consistent, and
testable.

Figure 5-3 shows the Joint Digital Autonomy Range process.
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Figure 5-3. Joint Digital Autonomy Range Process

Iterative testing alternates between methods that provide evidence for large portions of the
sample space and methods that provide evidence from accurate, small sample size tests. Large
sample space methods should be used to develop evidence that is comprehensive, providing
confidence that the autonomy under test will satisfy mission requirements under sufficiently
robust circumstances. Large sample space methods include context-independent testing, FTRT
simulation-based testing, and formal analysis of the underlying algorithms when possible.

Small sample space methods should be used to validate large sample space results,
demonstrating that equivalent results are achieved when identical tests are run under conditions
accurately representing the real-world. Small sample space methods include VC human-in-the-
loop testing, LVC DT, formal correct-by-construction design analysis, and OT.

Another use of iterative testing is to implement adversarial tests. Adversarial testing can
iteratively and systematically probe the state space for weaknesses and failures. These diverse
iterative tests will produce an ensemble of evidence that varies in scope and form. For the
evidence to be of use, the test team must aggregate it into a unified assurance argument that can
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be used by the technical warrant holder, responsible party, or responsible organization to make a
certification decision.

The evidence aggregation process can be greatly simplified if a runtime assurance manager is
being deployed onboard the target platform. Runtime assurance managers provide safeguards
against unacceptable decisions that violate safety protocols or rules of engagement. When a
validated runtime assurance manager is deployed, the strength of evidence required for
certification is relaxed, as the focus shifts to demonstrating that the autonomy operates within
defined risk tolerances. The runtime assurance manager ensures that when the system encounters
conditions outside of these tolerances, it mitigates risk by intervening, ensuring that system
performance degrades gracefully rather than leading to catastrophic failure.

Because the Al being used to make autonomous decisions is based upon some form of model
and/or training set, sustained performance requires continuing validation of the autonomy to
affirm that the underlying models remain valid with respect to the operating environment.
Continuing validation should be performed by a combination of onboard runtime assurance
and/or post-mission maintenance activities under which consistency tests are performed to
confirm that changing operational conditions remain within the model performance parameters.

When a common framework is being used to develop a family of unmanned platforms, the T&E
of these platforms can be greatly accelerated by utilizing a digital test range. The digital range
consists of autonomy test tools tailored to support autonomous systems using a predefined
autonomy framework. An autonomy reference implementation of Al libraries, validated systems
models, model-based decision models, and runtime assurance engines allows the test team to
rapidly establish limited objective experiments for requirements analysis and component and
assembly experimentation. A joint digital range as shown in Figure 5-3 can provide reusable
infrastructure to support these processes.

More information about resources for digital ranges will be added in future expansions to this
guidebook.

5.1.2 Scientific Test and Analysis Techniques for Autonomous Systems

The second overarching method is STAT for autonomous systems. STAT for autonomous
systems, or STAT for autonomy, leverages rigorous scientific principles to ensure the reliable,
safe, and effective operation of these complex systems. STAT, a collection of deliberate and
methodical processes and procedures, offers a robust framework for addressing the complexities
of autonomous systems T&E. By integrating the scientific method into all phases of testing,
STAT enables the development of efficient, defensible, and decision-enabling test strategies, test
plans, test designs, and test data analysis.
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Description of STAT for Autonomous Systems

STAT for autonomy employs a structured, hypothesis-driven approach to T&E, mirroring the

scientific method, to ensure that testing is objective, data driven, and focused on drawing

meaningful conclusions about system capabilities and limitations.

STAT for autonomous systems:

Emphasizes the formulation of testable hypotheses about system behavior, derived from
system requirements and operational scenarios, to focus T&E activities and ensure that
the collected data are relevant to assessing system performance.

Prioritizes the collection of objective data through well-designed experiments and
simulations to characterize autonomy performance and trustworthiness with maximum
effectiveness and efficiency.

Applies rigorous statistical analysis to interpret test data and draw conclusions about
autonomous system performance, which ensures that conclusions are supported by
evidence and that uncertainty is properly quantified.

The use of STAT for the T&E of DoD systems is required by DoD regulations.

Details and Best Practices

Key features of STAT for autonomous systems T&E include:

Addressing complexity. Autonomous systems operate within intricate environments
influenced by numerous factors, including environmental conditions, sensor inputs,
human interactions, and internal algorithms. These factors can interact in complex ways,
making it challenging to predict system behavior. STAT provides a structured approach
to decompose this complexity and identify the most critical factors and interactions.

Optimizing test efficiency. STAT employs techniques such as design of experiments to
maximize the information gained from each test while minimizing the number of tests
required. This scientific approach to test design helps to efficiently explore the vast
operational space of the autonomous system and identify potential issues with fewer
resources.

Conducting sequential testing. STAT utilizes sequential testing, where testing continues
to build upon prior test results to better characterize the system’s performance. This
adaptive approach allows for efficient use of testing resources over vast autonomy
domains.
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e Utilizing Bayesian statistics. Bayesian statistics are employed to incorporate prior
knowledge and to update beliefs about system performance as new data become
available, leading to more informed decision-making.

e Fostering collaboration and expertise. Effective implementation of STAT requires
collaboration between test engineers, statisticians, and subject matter experts. The STAT
Center of Excellence (COE) can provide valuable resources and expertise.

e Facilitating early integration. Integrating STAT into the T&E process early in the
development cycle allows for iterative learning and informed decision-making
throughout the system’s life cycle.

e Enhancing flexibility and adaptability. STAT helps accommodate a T&E process that is
flexible and adaptable to accommodate changes in requirements, unexpected test results,
and evolving technologies.

e Improving documentation. Clear and comprehensive documentation of the T&E process,
including test plans, data analysis, and results, is essential.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of STAT for the T&E of autonomous systems
include the following:

e Primary outcomes:

o Accurate characterization of performance and risk. By applying rigorous scientific
methods, STAT provides strong evidence to support claims about system
performance and trustworthiness, as well as to identify and quantify potential risks.

o Improved system performance. The iterative nature of STAT allows for continuous
improvement of the system based on data-driven feedback.

e Additional benefits:

o Enhanced understanding of system behavior. STAT provides insights into how the
system performs under different conditions and in response to various stimuli.

o Reduced development time and costs. Early identification of potential issues through
rigorous testing can prevent costly rework later in the development cycle.

o Improved communication and collaboration among stakeholders. The structured
approach of STAT facilitates clear communication and collaboration among
developers, testers, and end users.
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o Increased transparency and accountability. The formalized documentation practices
of STAT promote transparency and accountability in the T&E process.

o Better informed decision-making. STAT provides decision-makers with the objective
data and analysis they need to make informed decisions about system development
and deployment.

o Facilitation of certification and accreditation. The rigorous testing and documentation
practices of STAT can support the certification and accreditation of autonomous
systems for operational use.

Requirements and Mission Decomposition

The foundation of STAT for DoD systems lies in a thorough examination of the system
requirements. For autonomous systems, this examination can be particularly challenging because
of the systems’ complexity and the potential for unpredictable behavior, which may mean that
system requirements must be derived from mission capability needs. A clear understanding of
requirements is crucial for effective and efficient T&E.

¢ Performing Comprehensive Requirements Analysis. This step includes decomposition
of mission objectives; human-machine interaction and teaming aspects; the CONOPS;
supporting assets; and the relationships between the system, threats, and other entities
within a mission scenario. By decomposing the mission capabilities along with the
conditions and scenarios where they will be employed, the test team achieves
understanding of what, where, when, with whom, and how the system must perform.

e Understanding Expected Autonomy Behaviors. Autonomous systems pose new
challenges in capability requirements because executing a mission task effectively may
mean more than just reaching some end state—“how” the system does a task may be
important to mission effectiveness based on interactions, such as deconfliction, with
allies, teammates, bystanders, and mission command authorities. The expected means of
accomplishing a task may result in additional derived requirements for the autonomous
system.

¢ Defining Test Objectives. Requirements that are well-defined, specific, measurable,
achievable, relevant, and traceable will then allow effective test objectives to be
established, guiding the subsequent steps in the STAT process and test planning.
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STAT for Autonomous Systems Test Planning

Effective test planning is crucial for the successful T&E of autonomous systems. Because of
autonomous systems’ complexity and their potential for unpredictable behavior, careful
consideration must be given to various factors throughout the planning process.

Key steps in STAT for autonomous systems test planning:

1. Assess Stakeholder Concerns: Understand stakeholder expectations and priorities
through clear communication channels and establish a prioritized list of test events.

2. Perform Decomposition: Break down the autonomous system into manageable
components or behaviors (e.g., sensors, perception, planning, control) to focus testing
efforts. Decomposition can occur at both the mission and system level.

3. Establish a Test Iteration Cycle: Adopt an iterative approach to testing, allowing for
adaptation and learning as knowledge is gained.

4. Generate a Comprehensive Input and Output List: Identify and document all relevant
input and output variables, defining the system’s performance envelope and measurement
metrics.

5. Consider Test Execution Constraints and Limitations: Account for limitations in
randomization, factor control, and resource availability when designing test procedures.

6. Establish a Data Pipeline: Plan for data reduction, analysis methods, and reporting to
ensure efficient and timely processing of test data.

7. Build a Test Matrix: Develop a test matrix that aligns with the chosen T&E method
(e.g., designed experiment, observational study) and respects resource constraints.

8. Perform Data Analysis: Employ appropriate statistical techniques to analyze test data,
validate models, and draw meaningful conclusions about system performance.

STAT for Test Design of Autonomy M&S Systems

STAT has a crucial role in the design and analysis of simulations for autonomous systems. It
involves creating simplified representations, sometimes called meta-models (surrogate models),
of complex simulations to facilitate the efficient exploration and analysis of the system’s
operational space.

Key considerations of STAT for M&S:

e Comprehensive Sampling: Ensure thorough exploration of the simulation’s state space
to capture critical system behaviors and avoid missing key areas.
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e Surrogate Model Development: Divide the simulation into manageable components and
develop surrogate models for each, linking them together to form a meta-model.

e Stakeholder Concerns: Clearly understand stakeholder expectations and priorities for
the simulation to guide meta-model development and analysis.

e Process Decomposition: Analyze the simulation architecture and identify key functions
and potential bottlenecks to inform the meta-modeling strategy.

e Input and Output List: Document all relevant input and output variables for each
subcomponent of the meta-model, considering potential differences from the real-world
system.

e Data Pipeline: Establish an efficient data pipeline for extracting and processing
simulation data for meta-model development.

e Test Matrix: Design test matrices for each surrogate model, considering the importance
of factor significance and model prediction.

e Test Iteration Cycle: Adopt an iterative approach to meta-modeling, especially for
simulations under continuous development, to adapt to evolving requirements and
priorities.

e Test Execution: Consider the deterministic nature of the simulation and potential
benefits for test execution, while still acknowledging the importance of randomization for
risk mitigation.

e Curse of Dimensionality: Address the challenges posed by high-dimensional data
through appropriate techniques such as state space partitioning, principal component
analysis, or increased sample size.

STAT for Analysis of Autonomy M&S Systems

Once a meta-model is developed, appropriate analysis techniques are employed to gain insights
into the behavior of the autonomous system within the simulation environment. Validating the
overall simulation against real-world data is crucial to ensure its accuracy and reliability in
representing the behavior of the autonomous system.

e Comparison with Real-World Data: Compare simulation predictions with real-world
observations, focusing on key factors identified through meta-model analysis.

e Goodness of Fit: Evaluate the goodness of fit of the surrogate models, paying close
attention to potential overfitting and employing validation techniques to ensure model
accuracy.
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e Residual Analysis: Analyze residuals to identify potential biases in the surrogate models
and assess their overall performance.

o Use of Statistical Criteria: Apply published scientific statistical criteria to quantify how
well the live test data matches simulation and model results, not just for the data mean
but for variability such as standard deviation as well.

e Model Use: Utilize the meta-model to inform real-world testing, generate rapid
predictions, and answer specific stakeholder questions.

e Combined Analysis: Combine real-world and simulation data in a single analysis to
identify discrepancies and areas where the simulation deviates from reality.

Costs, Limitations, and Assumptions

The use of STAT for autonomous systems may have the following negative impacts:

e Involves initial costs and time in planning. Implementing STAT may require investment
in new tools, training, and personnel. In most cases, however, the initial overhead
results in more streamlined, efficient, and effective test design, execution, and analysis.

e Requires expertise in statistics and data analysis. Effective implementation of STAT
requires personnel with expertise in statistics, data analysis, and experimental design.

Tools and Resources

For more information and tools that support STAT and its benefits for the DT&E of autonomous
systems, see:

e STAT COE Website (https://www.afit.edu/stat/index.cfm) to get access to experts for
help.

o Ask-a-STAT resource (https://www.afit.edu/STAT/page.cfm?page=498) for quick
assistance.

e STAT COE Test Planning Guide for detailed guidance on initiating the requirements
analysis process and developing comprehensive test plans.

e Model validation guidance in the Institute for Defense Analyses Handbook on Statistical
Design and Analysis Techniques for M&S Validation (Wojton et al. 2019).

Challenges Addressed by This Method

STAT for autonomous systems helps to address several challenges including:
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e T&E as a Continuum. STAT for autonomy provides a rigorous T&E methodology that
accounts for iterative testing processes.

e Requirements. The STAT process helps identify derived requirements and leads to well-
defined, measurable test objectives.

e Safety. Rigorous testing and analysis help to identify and mitigate potential safety
hazards.

e Ethics. STAT promotes transparency and accountability, helping to address ethical
concerns related to the development and deployment of autonomous systems.

e Data. STAT emphasizes the importance of data management and analysis for drawing
scientifically defensible conclusions to understand system behavior.

e HAT. STAT provides a structured approach to assessing the interaction between humans
and autonomous systems.

e Test Adequacy and Coverage. STAT supports the ability to measure and assess the
breadth and depth of testing. Ensuring test adequacy and coverage is the most important
challenge that STAT can address.

e Autonomy Integration and Interoperability. STAT provides a process for structuring
evaluation plans to understand how autonomous systems interact with each other, the
environment, and human operators.

5.1.3 Modeling and Simulation for Autonomy Test and Evaluation

The final overarching method for autonomy T&E is M&S, which provides a powerful
framework for analyzing, testing, and refining autonomous systems in controlled environments.
By replicating operational scenarios, M&S enables early evaluation of system performance,
identifies potential issues, and informs design and development processes, ultimately reducing
the risks and costs associated with real-world testing. M&S is most effective as a complement to
live testing and should not be viewed as a replacement for it.

This section provides an overview of the basics of M&S for autonomous systems and how it
supports and is supported by live T&E. Concise, basic information about the best practices,
limitations, and challenges of M&S for autonomy T&E are presented first, followed by a more
detailed discussion of these concepts.

Description of M&S for Autonomy T&E

M&S for autonomy T&E:
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e Involves virtual or physical representations of autonomous systems, scenarios, and
interactions to evaluate performance, trustworthiness, and even design choices.

e Simulates operational environments to test autonomous system performance under a wide
range of conditions, including potentially difficult or unsafe test scenarios.

Details and Best Practices

Key features of M&S for the T&E of autonomous systems include:

¢ C(learly defining the goals and objectives of the M&S effort by identifying the specific
questions to be answered and the metrics to measure success.

e Using independent, government-owned simulation capabilities to provide separation from
developer goals to ensure unbiased and useful evaluations.

e Using standardized and accredited M&S test environments, scenarios, and methodologies
to provide credible results to stakeholders.

e Using high-fidelity simulations to replicate complex operational scenarios for the
accurate and reliable evaluation of system capabilities.

e Modeling uncertainty and variability and integrating real-world data, when possible, into
models to enhance realism and ensure that scenarios are representative of the expected or
even unexpected mission conditions.

e Supporting iterative development by allowing rapid experimentation, testing, and
refinement of the system designs and algorithms.

¢ Incorporating multi-agent simulations to assess the interactions between autonomous
systems, human operators, and other teammates or assets.

e Providing a scalable framework to evaluate system performance under widely varying
operational, environmental, and adversarial conditions.

e When practical, using actual autonomous system software (the exact software used in the
actual system) within the simulation environment to enable key insights and evaluation of
algorithms and processes.

e Rigorously validating and verifying models used in the simulation to ensure the accurate
representation of the real-world system and environment by comparing simulation results
with data from physical tests.

e Regularly updating and improving the models used in the simulation as the system and its
operating environment evolve to help ensure that the M&S effort remains relevant and
effective.
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Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of M&S for the T&E of autonomous systems

include the following:

e Primary outcomes:

o

Early identification of performance issues, design flaws, and operational risks through
controlled, repeatable testing scenarios.

Validation of system capabilities in a wide range of operational conditions, reducing
the cost, schedule, safety, and security risks of live testing.

e Additional benefits:

o

Enhanced stakeholder confidence through the transparent and detailed evaluation of
system performance.

Support for requirements validation by aligning the system design with operational
needs before deployment.

Facilitation of multi-domain testing by integrating land, air, sea, and space
environments within a single simulation framework.

Ability to model and test complex interactions, including HAT and multi-agent
operations.

Cost savings by minimizing the need for physical prototypes and extensive real-world
hardware testing.

Mitigation of safety and security risks by using simulated test and support assets
without endangering or compromising high-value hardware assets.

Acceleration of development timelines by allowing the rapid iteration and evaluation
of new system designs.

Costs, Limitations, and Assumptions

The use of M&S for autonomy T&E may have the following negative impacts or trade-offs:

e High upfront costs for developing detailed models, simulations, and the necessary

infrastructure and personnel to execute them.

e Limited access to intellectual property, such as software emulation or interface control

documents, which may hinder the proper integration of autonomous systems in M&S
environments. Contracts may need to be negotiated to ensure that cognitive and other
software is available for M&S purposes.
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¢ Fidelity of assumptions made in simulation environments not fully representing real-
world complexities, leading to gaps in testing accuracy.

e Limited availability of high-fidelity data to populate models, which can reduce the
validity of simulation outcomes.

e Potential for overreliance on simulation results, which may lead to unexpected
performance issues in real-world applications.

e Lack of awareness among programs, testers, and developers regarding potential M&S
frameworks and resources for autonomous systems.

Tools and Resources

For more information and tools that support M&S for autonomy T&E and its benefits for the
DT&E of autonomous systems, see:

e DoDI 5000.61, “DoD Modeling and Simulation Verification, Validation, and
Accreditation.”

e M&S for T&E Guidance in the Director, Operational Test and Evaluation (DOT&E)
TEMP Guidebook.

e Advanced Framework for Simulation, Integration, and Modeling (AFSIM)
(https://dsiac.dtic.mil/models/afsim/).

Challenges Addressed by This Method

M&S for autonomy T&E helps to address several challenges for the T&E of autonomous
systems including:

e T&E of the OODA Loop. M&S supports iterative testing of the observe, orient, decide,
and act processes by incorporating real-time feedback into system behavior evaluations.

e Test Adequacy and Coverage. M&S ensures comprehensive testing by offering a
solution to address all operational conditions and edge cases.

Considerations and Applications for Autonomy M&S

M&S provides a versatile framework for addressing challenges in the development and testing of
autonomous systems. Beyond standard evaluations, M&S enables the exploration of edge cases,
adversarial conditions, and emerging technologies, ensuring that systems are robust, reliable, and
adaptable to operational demands. The following discussion provides additional details about
these and other benefits and challenges.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
94


https://dsiac.dtic.mil/models/afsim/

5. Methods and Best Practices

Types and Uses of M&S for Autonomy T&E

A variety of models and simulations can be used in the autonomy T&E process, from R&D to
acquisition. Models that the test engineer will find useful include:

e Cognitive models: Abstract representations of the autonomy under test.

e System models: Abstract representations of the host platform, its constituent parts
(including sensors), and the relationships between those parts.

e Environmental models: Abstract representations of the world in which the system exists
including causal relationships between the system and the world.

e Cognitive simulations: Simulacrums of the “thought process” of the autonomy under test,
which include the “orient” and “decide” phases of the OODA loop process.

e FTRT simulations: Often constructive simulations that simulate the performance of the
autonomy under test in a synthetic world at high rates of speed.

e Real-time simulations: Simulations that simulate the performance of the autonomy under
test in a synthetic world that runs on “wall clock” time.

e Virtual simulation: A simulation that involves real people operating simulated systems
(often at real time).

e Constructive simulation: A simulation that involves simulated people operating simulated
systems (often at FTRT).

As shown in Table 5-1, these models and simulations can be used throughout the acquisition
process, for uses that include:

e Requirements analysis. Mission engineers can utilize cognitive models to examine the
mission impact of hypothetical autonomous systems producing autonomy requirements
that maximize mission performance.

e Formal analysis. Methods can use cognitive and system models and cognitive simulations
to define theoretical performance limits of the autonomy under test.

e Simulation-based testing. This approach examines autonomy performance in very large
numbers of circumstances, providing evaluation with broad scenario and condition
coverage.

e Bench testing. This testing examines the timeliness of autonomy decisions.

e HITL testing. This method examines human-autonomy interactions by allowing the
human to interact with the autonomy operating in a virtual world.
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e LVC testing. This technique allows the safe, cost-effective testing of autonomy
performance in large, complex, or high-risk encounters with a combination of live, virtual
simulation and/or constructive simulation assets.

Table 5-1. Application of M&S Across the System Life Cycle

Types of Methods
Cognitive | System | Environmental | Cognitive FSZ;?ETTr?qaen Real-Time
Models Models Models Simulation : . Simulation
Simulation
Requirements v v v v v
Analysis
Formal v v v
Analysis
o)
= Simulation
» ) v v v
§ Based Testing
(Yo
[3)
g:_ Bench Testing v v v
>
(-
Human-in-the-
v v v
Loop Testing
LVC Testing v v v

Interoperability Testing with M&S

One of the key strengths of M&S is its scalability. Simulations can model the behavior of
multiple autonomous systems working in coordination, offering valuable insights into
collaborative tasks such as swarm dynamics, multi-agent interactions, and HAT. Modern weapon
systems are increasingly required to operate within a larger, cross-Service, multi-domain
warfighting architecture, where horizontal and vertical interoperability is critical. M&S provides
a cost-effective and efficient means to evaluate system interoperability, addressing resource
constraints and competing test priorities while enabling informed assessments of operational
effectiveness in dynamic mission scenarios.

M&S Support to HSI Testing

M&S plays a pivotal role in HSI testing, encompassing domains such as training, human
performance, workload, and usability. By leveraging tools such as the Improved Performance
Research Integration Tool (IMPRINT) (Mitchell 2003) and Infantry Warrior Simulation
(IWARS) (EI Samaloty et al. 2007), M&S allows developers to evaluate how human operators
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interact with autonomy-enabled systems in mission-critical scenarios. These simulations refine
system usability, ensure appropriate workload distribution, and assess human performance
metrics under realistic conditions, supporting the integration of HSI considerations into system
design.

To advance HSI testing further, M&S must incorporate real-time, mission-level assessments that
evaluate the interaction between humans and autonomous systems in operational contexts. This
approach includes using validated M&S resources to predict system performance, identify risks,
and support evaluations of system effectiveness and suitability. Additionally, HSI-focused
simulations provide a safe and cost-effective means to evaluate operator training and situational
awareness, reducing reliance on live testing while enhancing mission readiness and operational
efficiency.

Test Optimization Using M&S

Another advantage of M&S is its ability to optimize testing strategies throughout the system life
cycle. From initial concept development and requirements validation to deployment and
sustainment, simulations provide a consistent platform for refining test approaches. This
approach ensures that autonomous systems remain effective as operational needs evolve and new
challenges emerge.

Using M&S, the value of decisions about a system can be quantified in terms of the system’s true
parameters. This value is derived directly from the TEMP for the SUT, the associated key
performance parameters, and the decision set. By quantifying the operational impact of post-live
test recommendations, M&S assigns high value to greenlighting systems with strong
performance parameters and low uncertainty, while flagging systems with high uncertainty or
poor performance for additional testing or revisions. This framework ensures that stakeholder
priorities—such as mission risk, operational effectiveness, and schedule—are evaluated
alongside testing costs in a unified model.

M&S regression further supports test optimization by predicting how future live-test options can
improve the knowledge of system performance parameters. By simulating various scenarios,
M&S identifies the most resource-efficient live-test program, reducing unnecessary testing while
ensuring that critical performance data are captured effectively.

Integrated Test and Training with M&S

The integration of M&S with T&E and training creates a unified approach that enhances both
system development and operator performance. Traditionally, training and system acquisition
pipelines operate separately until merging at OT. With M&S, these pipelines can converge

earlier, even before DT or the System Requirements Review, leveraging model-based systems
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engineering tools such as the Systems Modeling Language (SysML) and Unified Modeling
Language (UML) Testing Profile (UTP). This integration enables the creation of constructive
and virtual simulations where operators begin training early, refining system behaviors and
improving operational readiness simultaneously.

Early merging of T&E and training delivers significant benefits, particularly for systems
incorporating ML. Expert operational personnel involved in training the ML model provide
essential expertise for development and testing while simultaneously gaining familiarity and trust
in the system. This approach ensures that operators understand how the system was built, the
data on which the system relies, and how to use the system effectively, fostering a collaborative
feedback loop for improvements. By aligning M&S, T&E, and training from the outset, this
approach enhances system effectiveness, calibrates appropriate trust, and maximizes learning
outcomes.

Technical Challenges of M&S for Autonomy T&E

M&S faces several technical challenges critical to evaluating autonomous systems. Accurate
rotational transformations are essential for simulating movement through space; however,
differing approaches between simulation platforms, such as Unity and Unreal Engine, complicate
system integration in live-virtual settings. Similarly, kinematics and dynamics modeling—key
for collision avoidance and interaction—require precise representations of motion and forces.
These computations often involve trade-offs between simulation fidelity and processing speed,
particularly when handling complex terrains, environmental interactions, or multi-agent
scenarios.

Another technical challenge for autonomous system simulation is the modeling and execution of
time. Autonomy decision engines may be optimized to run only at “real time”; thus, attempts to
run FTRT simulations may lose realism and value. The ability to run many scenarios and test
conditions FTRT is one of the key advantages of M&S, but computational hardware or software
limitations of the autonomy under test may not allow realistic FTRT simulations.

Simulation-to-real challenges further complicate testing because aligning simulated outputs with
real-world sensor data requires balancing cost, computational demands, and fidelity. Issues such
as the “reality gap” emerge when simulated environments fail to account for real-world
uncertainties, interactions, or collaborative agent behaviors. Effective integration also depends
on accurate environment synchronization to bridge the gap between virtual and physical testing,
particularly for reinforcement learning and training applications.

Dynamic environments and fidelity requirements also demand significant consideration.
Simulating evolving conditions such as weather, time of day, or non-player character behaviors
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adds complexity to virtual testing. Determining the appropriate fidelity involves identifying key
questions and behaviors to evaluate, starting with simplified models, and iteratively refining
them to balance resource constraints with critical knowledge gaps. Tailored approaches help
ensure that simulations achieve the necessary accuracy while remaining practical and resource
efficient.

5.2 Acquisition and Development Strategy

Effective T&E of autonomous systems must be strategized, planned, and designed into the
program and system from the beginning to achieve justified evidence of performance and
trustworthiness. This section discusses several practices related to an autonomous system’s
acquisition strategy or development strategy, which help to enable the effective, efficient, and
robust T&E of autonomous systems:

e Operational modeling.

e Small-scale development.

e Open system architecture.

e Autonomy requirements and specifications.

e Continuous testing.

e Code 1solation.

e Assurance cases.

These practices may not apply to every autonomy program, but where implemented, they help
enable successful T&E of autonomous systems with reduced costs and time.

5.21 Operational Modeling

Operational modeling provides a conceptual framework for understanding the specific roles,
tasks, and behaviors that an autonomous system will need to perform. This approach supports
requirements development by detailing use cases and procedures, helping ensure that developers
build the system with the intended functionality and enabling T&E personnel to objectively
evaluate system performance of those tasks and behaviors.

Description of Operational Modeling

Operational modeling:

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
99



5. Methods and Best Practices

Describes specific tasks, use cases, and workflows that the autonomous system must
accomplish in its operational environment.

Details the interactions and procedures between autonomous systems and other assets,
ensuring alignment with mission requirements.

Translates complex operational needs into structured concepts, helping to avoid
misinterpretations and unnecessary design assumptions.

Details and Best Practices

Key features of operational modeling for the T&E of autonomous systems include:

Defining use cases and visually representing key tasks through storyboards to capture
requirements, such as practices used in software development, ensuring that developers
understand the system’s intended functions and interactions.

Enabling storyboards, operational assumptions, and workflows to be validated with
operators and end users to ensure accuracy and relevance.

Breaking down complex operations into specific behaviors and actions, allowing
developers to accurately translate requirements into system capabilities.

Incorporating detailed procedural steps between autonomous systems and other mission
assets, supporting effective requirements development and reducing misinterpretations.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of operational modeling for the T&E of

autonomous systems include the following:

Primary outcomes:

o Provides a well-defined set of operational roles, tasks, and behaviors that guides
developers in creating systems aligned with mission objectives and operational
expectations.

o Produces clearer, more actionable requirements that reduce ambiguity and enable
effective, robust T&E by aligning meaningful test objectives and evaluation criteria.

Additional benefits:

o Minimizes costly redesign by ensuring early alignment on system functionality.

o Enhances communication between stakeholders by visualizing complex requirements
and workflows.
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o Reduces the risk of misinterpretation, helping vendors and developers avoid building
unnecessary or incorrect functionalities.

o Supports program managers by providing a structured roadmap of required
capabilities and tasks.

Costs, Limitations, and Assumptions

The use of operational modeling may have the following negative impacts or trade-offs:

¢ Initial time and resource investment to create detailed operational models.
e Necessary modeling updates when requirements change.

e Reliance on subject matter expertise, which may limit modeling accuracy if expert input
is unavailable, incomplete, or wrong.

Tools and Resources

For more information and tools that support operational modeling and its benefits for the DT&E
of autonomous systems, see the Digital Engineering, Modeling and Simulation (DEM&S)
Community of Practice Website (https://www.cto.mil/sea/dems_cop/).

Challenges Addressed by This Method

Operational modeling helps to address several challenges for the T&E of autonomous systems
including:

e T&E of the OODA Loop. Operational modeling ensures that T&E can provide mission-
relevant insights into decision-making under various use-case scenarios and conditions.
¢ Requirements. Operational modeling facilitates the validation of system requirements.

e Personnel. Operational modeling enables testers without expert domain knowledge to
effectively evaluate autonomy behaviors with efficient, repeatable tests.

e Safety. Operational modeling ensures that the testing appropriately matches the
complexity and conditions that the system will encounter in operational scenarios.

e HAT. Operational modeling provides use cases to realistically test and evaluate
integrated human and autonomous system interactions and teaming.

e Autonomy Integration and Interoperability. Operational modeling offers scenarios
and behaviors to test and evaluate autonomous systems’ interactions with other platforms
and protocols.
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5.2.2 Small-Scale Development

Small-scale development uses inexpensive, simple platforms and assets to accelerate testing and
iteration, enabling rapid prototyping and scaling for larger systems. This approach supports
efficient development cycles while minimizing initial costs and resources.

Description of Small-Scale Development

Small-scale development encompasses the following:
o Cost-effective prototyping uses inexpensive, scalable platforms to test and refine
capabilities before full-scale implementation.

e Rapid development using surrogate platforms that are less complex reduces costs and
expedites development, allowing for iterative testing and accelerated refinement.

e Risk mitigation allows the identification and resolution of potential issues on surrogate
platforms before deployment on costly systems.

Details and Best Practices

Key features of small-scale development for the T&E of autonomous systems include:
e Use of surrogate assets to replicate primary system functions, enabling early-stage testing
and iterative refinement before committing to more expensive systems.

e Documentation of incremental progress, which tracks development and performance
improvements over time using small-scale assets, facilitating acceptance and integration
of larger, more costly systems.

e Reduced risk through phased testing that identifies and mitigates potential issues at a
smaller scale, reducing the risks and costs associated with large-scale testing.

e Rapid adaptation to feedback that allows for quick modifications based on test results,
expediting the refinement process and improving readiness for full-scale testing.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of small-scale development for the T&E of
autonomous systems include the following:
e Primary outcome:

o Enhanced efficiency and cost savings: Uses small, scalable assets to make system
development and testing safer, quicker, and more affordable.
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e Additional benefits:

o Lower risk exposure: Conducts initial testing on surrogate platforms, reducing the
risks associated with testing on costly, full-scale systems.

o Reduced testing timelines: Speeds up development cycles by allowing rapid iteration
and early validation, minimizing the time needed to move from prototype to full-scale
implementation.

o Flexible prototyping: Provides a modular and adaptive approach to test varying
configurations, enabling teams to tailor designs based on evolving requirements.

o Encouragement of innovation: Uses low-cost testing environments to allow for more
experimentation, fostering innovative approaches to system development.

Costs, Limitations, and Assumptions

The use of small-scale development may have the following negative impacts or trade-offs:

e Representational inaccuracy. The assumption that small-scale assets can effectively
mimic the performance and behavior of full-scale systems may not always hold true in
complex scenarios.

e Risk of overlooking full-system interactions. Testing with simplified assets may miss
critical interactions and dependencies present in the complete system, leading to gaps in
T&E outcomes.

e Resource allocation for surrogate platforms. Although less expensive than full systems,
small-scale assets still require investment in development, management, and
maintenance.

e Computational limitations. Size constraints of smaller platforms may restrict onboard
processing capacity.
Tools and Resources

Future updates to this guidebook will provide additional information and tools that support
small-scale development and its benefits for the DT&E of autonomous systems.

Challenges Addressed by This Method

Small-scale development helps to address several challenges for the T&E of autonomous
systems including:
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e T&E as a Continuum. Small-scale development enables continuous, scalable testing
throughout the development cycle.

e Requirements. Small-scale development validates requirements on a smaller scale for
efficient adjustments.

e Safety. Small-scale development lowers risk by testing on small, low-cost assets first.
e Data. Small-scale development provides early performance data to guide larger-scale

testing.

5.2.3 Open System Architecture

A major development in the acquisition strategy and systems engineering areas is the use of open
system architecture, as part of a Modular Open Systems Approach (MOSA). The implementation
of MOSA in autonomous systems provides great potential benefits to the systems” DT&E.

Basic Description of Open System Architecture

Open system architecture:
¢ Employs a modular design that uses modular system interfaces between major systems,
major system components, and modular systems.

e Allows major system components to be incrementally added, removed, or replaced
throughout the life cycle.

e Uses nonproprietary, open architecture standards for integrating subsystems and services
into the mission package with government-owned interfaces.

MOSA is the DoD preferred method for the implementation of open systems and is required in
accordance with Section 4401 of Title 10, United States Code.

Figure 5-4 shows the features and processes of MOSA.
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Figure 5-4. Features and Processes of a Modular Open Systems Approach

Details and Best Practices

Key features of MOSA for the T&E of autonomous systems include:
e Standardized government-owned open architectures with built-in hooks and capacity for
internal cognitive T&E instrumentation.

e Subsystem, system, and SoS interfaces that allow the reuse and automation of T&E tools
for data recording, processing, and analysis.

e Consistent subsystem purpose and functionality that supports modular T&E verification,
as well as straightforward comparison between competitors.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of MOSA for the T&E of autonomous systems
include the following:
e Primary outcomes:
o Accurate T&E insight into internal system processes.
o Portable T&E instrumentation and measures that can be reused.
e Additional benefits:

o The ability to rapidly share information across domains, with quick and affordable
updates or improvements to both hardware and software components.
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o Allowance of severable major system components, affording opportunities for
enhanced competition and innovation.

o Significant cost savings or avoidance.
o Schedule reduction and rapid deployment of new technology.
o Opportunities for technical upgrades and refresh.

o SoS interoperability and mission integration.

Costs, Limitations, and Assumptions

The use of open system architecture and related approaches may have the following negative
impacts:

e Cost of infrastructure and personnel to organize, design, manage, implement, and
maintain open architecture standards, interfaces, and tools.
e Limitations on system design uniqueness and potential efficiency.

e Potential for vulnerability and degradation of the technical edge due to adversary insight
into system architecture and design.

e Obscuring of growing interdependencies between components by modular architecture,
requiring ongoing management and maintenance efforts, especially in autonomous
systems.

e Emergence of complex system failures when individual components interact in
unintended ways. Hidden coupling can obscure the root causes of failures and lead to
cascading failure propagation that is difficult to diagnose.

e Need for T&E to verify that open architecture goals have been achieved in system
development and will effectively support future upgrades and maintenance.

Tools and Resources

For more information and tools that support open system architecture and its benefits for the
DT&E of autonomous systems, see:

e Open Architecture Management (OAM) Website
(https://www.vdl.afrl.af.mil/programs/oam/index.php).
e Open Mission Systems in a Nutshell (available on the OAM Website).

e Naval Air Systems Command (NAVAIR) MOSA Website
(https://www.navair.navy.mil/MOSA).
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¢ Unmanned Maritime Autonomy Architecture.

e AFSIM (https://dsiac.dtic.mil/models/afsim/).

Challenges Addressed by This Method

Open system architecture helps to address several challenges for the T&E of autonomous
systems including:

e T&E as a Continuum. Open system architecture supports the reuse and automation of
T&E tools.

e T&E of the OODA Loop. Open system architecture allows cognitive instrumentation for
decision-making insights and root cause analysis.

e Requirements. Open system architecture simplifies and standardizes how requirements
are tested.

e Infrastructure. Open system architecture allows reusable T&E tools that measure
standardized processes.

e Safety. Open system architecture enables standardized checks and controls on
autonomous behaviors.

e Data. Open system architecture standardizes data formats and mandates well-defined
messaging.

e HAT. Open system architecture supports standardized human roles and authority
delegation and provides a foundation for human expectations.

¢ Black Box Components. Open system architecture supports insight into direct inputs and
outputs of hard-to-explain component performance and measurement.

e Autonomy Integration and Interoperability. Open system architecture provides
interfaces and standards.

5.2.4 Autonomy Requirements and Specifications

In the requirements development process, it is essential to include individuals with T&E
expertise in developing and evaluating autonomous behaviors. Often, stakeholders fail to
recognize when they are imposing assumptions about how to do the task based on existing
practice. The efficient or effective way for an autonomous system to do a task may be very
different from the way a human would do the task. It is important to ensure that the requirements
are driven by operational need, not stakeholder assumptions.
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Description of Autonomy Requirements and Specifications

This method involves effective requirements and specifications development for autonomous
systems employing a deep understanding of autonomous behaviors and operational needs—
ensuring that requirements are not based on assumptions or how humans perform tasks, but
rather on what the autonomous system needs to achieve.

Details and Best Practices

Key features of autonomy requirements and specifications for the T&E of autonomous systems
include:

e Focusing primarily on what the system should do, not how it should do it—unless the
how is also a clear requirement.

e Defining which decisions are the responsibility of the autonomous system.

¢ Ensuring that requirements reflect the minimum capability needed.

e Testing for internal conflicts and inconsistencies in requirements.

e Using measurable goals whenever possible.

¢ Following standards such as the Institute of Electrical and Electronics Engineers (IEEE)
1872.1-2024, “IEEE Standard for Robot Task Representation.”

e Using ontologies to simplify requirement development and consistency checks.
e Documenting assumed operational constraints.

e (learly defining responsibilities and interfaces between autonomy, runtime assurance,
and fault management.

e Using formal methods where possible, but carefully documenting assumptions.

e Allowing for flexibility in requirements to accommodate changes and undocumented
failure modes.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of the autonomy requirements and specifications
method for the T&E of autonomous systems include the following:
e Primary outcome:

o The development of clear, concise, and testable requirements that accurately reflect
the desired capabilities of the autonomous system.
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e Additional benefits:
o Improved communication and understanding between stakeholders.
o Reduced development time and cost.
o Increased system reliability and safety.
o Enhanced user trust and confidence.
o Facilitated integration and interoperability with other systems.
o Improved ability to manage complexity and risk.

o Ensured support for ethical considerations in autonomous system design.

Costs, Limitations, and Assumptions

The use of the autonomy requirements and specifications method may have the following
negative impacts:

e Increased initial effort required to develop comprehensive requirements.

e Potential difficulty in quantifying some qualitative goals.

e Need for specialized expertise in autonomous behavior and formal methods.

Tools and Resources

For more information and tools that support effective requirements for the DT&E of autonomous
systems, see Requirements Management, one of the eight technical management processes
included in the Defense Acquisition University (DAU) Systems Engineering Brainbook
(https://www.dau.edu/tools/dau-systems-engineering-brainbook).

Challenges Addressed by This Method

The autonomy requirements and specifications method helps to address several challenges for
the T&E of autonomous systems including:

¢ Requirements. The autonomy requirements and specifications method provides a
structured approach for developing clear, concise, and testable requirements.

e Safety. By focusing on minimum capabilities and documenting assumptions, this method
helps to ensure system safety.

e HAT. The autonomy requirements and specifications method promotes a clear definition
of roles and responsibilities in HATs.
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Autonomy Integration and Interoperability. The autonomy requirements and
specifications method supports the development of requirements that facilitate integration
and interoperability with other systems.

Continuous Testing

Continuous testing for autonomous systems refers to an ongoing process that integrates testing

throughout the development and operational life cycle of autonomous technologies. Continuous

testing is essential to ensure that autonomous systems software and hardware components are

reliable, safe, and capable of adapting to changing conditions and requirements. This approach

helps track the growth and evolution of the autonomous capabilities over time as they take on

more numerous and complex tasks. This approach is critical to establishing a CI/CD pipeline of

capability.

Description of Continuous Testing

Continuous testing:

Integrates what were traditionally separate and often consecutive test processes into an
integrated agile framework.

Focuses on collaboration and having a single test team.
Is iterative, learning from each test to rapidly inform future testing.

Strives to be adaptive to rapidly changing requirements and operational needs to enable
CI/CD of capabilities.

Details and Best Practices

Key features of continuous testing for the T&E of autonomous systems include:

Testing early and often: Begin testing at the earliest stages of development and continue
throughout the life cycle and encourage rapid feedback loops to identify issues quickly.

Modular testing: Break down systems into smaller, manageable components for more
focused testing to make it easier to isolate and address specific issues.

Cross-disciplinary collaboration: Involve cross-functional teams, including software
developers, hardware engineers, and safety experts, to enhance the overall understanding
of system interactions.

Automated testing frameworks: Utilize frameworks that support automated unit,
integration, and system testing and implement CI/CD pipelines for seamless updates.
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e Simulation environments: Use realistic simulations to test various scenarios that an

autonomous system may encounter (e.g., adverse weather, unexpected obstacles) because

simulations can help in assessing performance and safety without real-world risks.

e Hardware-in-the-loop testing: Integrate real hardware with simulation models to validate

the system’s performance in a controlled setting to identify hardware-related issues early.

e Safety and compliance testing: Conduct thorough safety analyses including hazard

analysis and risk assessments concurrent with testing.

e Continuous monitoring: Implement real-time monitoring of deployed systems to gather

data on performance and identify potential failures.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of continuous testing for the T&E of autonomous

systems include the following:

e Primary outcome:

o

Adaptation to change. Autonomous systems often need updates or improvements
based on new data, algorithms, or environmental changes. Continuous testing ensures
that these changes do not introduce new issues.

e Additional benefits:

o

o

Safety assurance. Autonomous systems operate in dynamic environments, where they
encounter unpredictable scenarios. Continuous testing helps identify and mitigate
risks, ensuring that the system behaves safely under various conditions.

Performance validation. As autonomous systems learn and adapt over time,
continuous testing validates their performance against expected outcomes, ensuring
they operate efficiently and effectively.

User trust. For users to trust and adopt autonomous systems, the systems must
demonstrate consistent reliability and safety. Continuous testing helps build that trust
through regular validation and performance checks.

Integration with other systems. Autonomous systems often need to interact with other
technologies. Continuous testing ensures seamless integration and functionality in
diverse environments.

Costs, Limitations, and Assumptions

The use of continuous testing may have the following negative impacts or trade-offs:
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e Contract concerns. Providing adequate contract and sustainment support for continuous
testing can be potentially problematic.

e Scalability. As systems grow in complexity and scale, maintaining effective continuous
testing can become increasingly difficult.

e Integration. Assuming that CT, DT, OT, and operator training can be efficiently
integrated through continuous testing across the life cycle of the system may be
optimistic.

e Policy. Current policy does not always support continuous T&E processes.

Challenges Addressed by This Method

Continuous testing helps to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Continuous testing integrates traditionally separate testing phases
into an iterative process that evolves with system development and deployment, ensuring
ongoing validation and refinement.

e T&E of the OODA Loop. Continuous testing supports the evaluation of how an
autonomous system observes, orients, decides, and acts over time, identifying potential
latency, failure modes, or biases in decision-making.

e Personnel. Continuous testing reduces the reliance on large, periodic test events by
enabling continuous validation, allowing personnel to focus on assessing emerging risks
and system adaptations rather than reacting to unexpected failures late in development.

¢ Exploitable Vulnerabilities. Continuous testing enables the early detection of security
weaknesses by continuously testing for adversarial threats, cyber vulnerabilities, and
unexpected system behaviors.

e Data. Continuous testing ensures a steady influx of test data for training, validation, and
performance monitoring, improving AI/ML model robustness and adaptability over time.

¢ Black Box Components. Continuous testing facilitates the ongoing testing of proprietary
or opaque system components, ensuring that even if internal mechanisms are unknown,
system behavior remains predictable and safe.

e Dynamic Learning. Continuous testing provides a structured approach to monitoring
and testing autonomous systems that adapt and learn over time, ensuring that changes
do not introduce unintended failures or regressions.
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e Test Adequacy and Coverage. Continuous testing helps ensure comprehensive testing
across a range of conditions by continuously expanding the test space, reducing gaps in
evaluation and improving confidence in system readiness.

5.2.6 Code Isolation

Code isolation is a useful development strategy for ensuring the safety and security of
autonomous systems. This method has benefits for T&E, saving costs and time by reducing the
quantity of testing and the test rigor necessary to evaluate software changes by allowing smaller-
scoped T&E for noncritical software changes.

Description of Code Isolation

Code isolation:

e Involves the use of a software code development framework that enables the separation
of software components, reducing the risk of failures and vulnerabilities.

e (Can separate safety-critical software code or mission-critical code from noncritical code
to ensure operational safety and prevent unintended consequences.
Note: Code isolation is sometimes referred to as software compartmentalization in the software

engineering community.

Figure 5-5 depicts the code isolation of critical and noncritical software by showing how air gaps

separate different types of software development.

— PR—
o [« 8
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Safety-critical 2 || Security-critical 2 Non-critical
software < software < software
development development development

Figure 5-5. Code Isolation of Critical and Noncritical Software
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Details and Best Practices

Key features of code isolation for the T&E of autonomous systems include:

e Isolating safety-critical software, such as flight control systems, from other task software.

e Isolating security-critical software, such as authentication and authorization modules,
from other task software.

e Using separate development platforms and environments for critical and noncritical
software to minimize interference and unintended interactions.

¢ Planning and executing robust, comprehensive T&E of software changes in critical
modules.

¢ Planning and executing streamlined, limited T&E of noncritical software changes, based
on the code isolation safeguards and protections set up for software development.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of code isolation for the T&E of autonomous
systems include the following:
e Primary outcome:

o Provides rapid and responsive T&E to a majority of (noncritical) software changes
without the burdens of extensive testing.

e Additional benefits:

o Facilitates rapid software development cycles while protecting key software from
flaws and threats to software integrity.

o Reduces T&E cost and schedule because of the ability to focus testing efforts on
isolated components.

o Supports a more modular and open architecture, which can improve system flexibility
and maintainability.

o Enhances system resilience by preventing failures in one component from cascading
to others.

Costs, Limitations, and Assumptions

The use of code isolation may have the following negative impacts:

e Increases initial costs and time for setting up and implementing code isolation solutions.
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e Requires an open, modular architecture to fully realize the benefits of code isolation.

Tools and Resources

For more information and tools that support code isolation and its benefits for the DT&E of
autonomous systems, see the technical paper, “SoK: Software Compartmentalization” (Lefeuvre
et al. 2024).

Challenges Addressed by This Method

Code isolation helps to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Code isolation enables targeted testing of isolated software
components, reducing the need for full-system verification.

e Exploitable Vulnerabilities. Code isolation reduces the attack surface and mitigates the
risk of malicious code compromising critical functions.

o Safety. Code isolation prevents failures in noncritical software from affecting safety-
critical functions.

5.2.7 Assurance Cases

A useful method for organizing T&E data and other V&V information is the assurance case
method. This approach provides a structured and documented body of evidence to demonstrate
that an autonomous system satisfies its requirements and safety criteria, ultimately justifying
confidence in its trustworthiness.

Description of Assurance Cases

The assurance case method is a structured argument, supported by evidence, that provides a
compelling and valid case that a system is safe, secure, and fit for its intended purpose, and
which is adaptable to the specific needs and context of the system being evaluated.

Figure 5-6 shows an example assurance case block diagram.
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Source: Safety Case Templates for Autonomous Systems (Bloomfield et al. 2021)

Figure 5-6. Example Assurance Case Block Diagram

Details and Best Practices

Key features of assurance cases for the T&E of autonomous systems include:
e Identifying top-level claims: Clearly defining the desired properties of the system, such
as safety, security, or reliability, as top-level claims in the assurance case.

e Decomposing and refining claims: Breaking down top-level claims into subclaims and
refining them until they are specific enough to be supported by concrete evidence.

e Formulating arguments: Constructing clear and logical arguments that explain how the
evidence supports the claims, addressing any uncertainties or challenges.

e QGathering evidence: Collecting diverse evidence from various sources, including testing,
analysis, simulations, formal verification, and design documents.
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e Addressing challenges: Identifying and documenting potential “defeaters” or challenges
to the claims and providing counterarguments or mitigating factors.

e Promoting iterative development: Developing the assurance case in conjunction with the
system development process, allowing for feedback and refinement of both the system
and the case.

e Using a claims, arguments, and evidence (CAE) approach: Utilizing a CAE approach,
one common structure for assurance cases, where claims about the system’s properties
are decomposed into subclaims, supported by arguments and evidence.

e Utilizing the Assurance of Machine Learning for use in Autonomous Systems (AMLAS)
framework: Using the AMLAS process for developing assurance cases specifically for
autonomous systems that incorporate ML components.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of assurance case methods for the T&E of
autonomous systems include the following:
e Primary outcome:

o Justified confidence: Providing stakeholders with a high level of confidence that the
system is trustworthy and will operate as intended in its operational environment.

e Additional benefits:

o Improved communication: Facilitating clear communication and understanding of the
system’s safety and capabilities among stakeholders.

o Early issue identification: Enabling the early identification and mitigation of potential
issues throughout the development life cycle.

o Enhanced design: Informing and improving system design decisions by identifying
potential weaknesses.

o Support for certification: Providing a robust framework for demonstrating compliance
with safety standards and regulations.

o Traceability: Establishing clear links between requirements, design, and evidence.

Costs, Limitations, and Assumptions

The use of assurance cases may have the following negative impacts:
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Resource intensiveness. Developing and maintaining comprehensive assurance cases can
be time-consuming and require significant resources.

Complexity. Assurance cases for complex autonomous systems can become intricate and
challenging to manage.

Confidence calculation. Assessing the overall confidence in the assurance case, especially
when dealing with uncertainties and subjective judgments, can be challenging.

Tools and Resources

For more information and tools that support assurance cases and their benefits for the DT&E of

autonomous systems, see:

AdvoCATE (Assurance Case Automation Toolset), a software tool, developed at the

National Aeronautics and Space Administration (NASA) Ames Research Center, for

recording and managing assurance cases using the Goal Structuring Notation, and the
AdvoCATE User Guide.

AMLAS Tool, a tool supporting the AMLAS process for assurance cases in autonomous
systems with ML components (https://www.assuringautonomy.com/amlas/tool).

Review of Potential Assurance Case Tool Options for DoD (Roback 2024).

Safety Case Templates for Autonomous Systems (Bloomfield et al. 2021).

Challenges Addressed by This Method

Assurance case methods help to address several challenges for the T&E of autonomous systems
including:

T&E as a Continuum. Assurance cases support the concept of T&E as a continuum
throughout the system life cycle, allowing for iterative evaluation and refinement.

T&E of the OODA Loop. The structured argumentation in assurance cases can be used
to analyze and evaluate the performance of autonomous systems within the OODA loop
framework.

Personnel. Assurance cases provide a structured approach to communicate system safety
and performance, ensuring that decision-makers, testers, and operators understand system
limitations and expected behaviors.

Exploitable Vulnerabilities. By systematically considering potential hazards and
vulnerabilities, assurance cases can help identify and mitigate exploitable weaknesses in
autonomous systems.
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Safety. Assurance cases offer a rigorous framework for demonstrating and ensuring the
safety of autonomous systems in their operational environment.

Ethics. Assurance cases support transparency and accountability in autonomy decision-
making by documenting how ethical considerations, such as bias mitigation and fairness,
are addressed in system design and testing.

Data. Assurance cases can address the challenges associated with data-driven
autonomous systems by incorporating evidence from data collection, analysis, and model
validation.

HAT. Assurance cases ensure that interactions between autonomous systems and human
operators are effectively tested and validated to promote trust and operational
effectiveness.

Black Box Components. Assurance cases provide a structured methodology to evaluate
autonomous systems with opaque or proprietary components, ensuring that sufficient
testing is conducted despite limited insight into internal behaviors.

Mission Evolution. Assurance cases help assess system adaptability and robustness in
evolving mission environments by structuring arguments that account for changing
operational requirements.

Dynamic Learning. Assurance cases support the V&V of autonomous systems with
learning components by structuring arguments around how the system adapts over time
and how learning processes are evaluated for safety and effectiveness.

Test Adequacy and Coverage. Assurance cases establish a structured framework to
ensure that testing is comprehensive and systematically covers all critical aspects of
system behavior.

Autonomy Integration and Interoperability. Assurance cases provide a means to
document and evaluate how autonomous systems integrate with other platforms, ensuring
reliability and consistency across various operational contexts.

5.3 Test Strategy

Test strategies for autonomous systems are critical for timely and effective evaluations that

provide justified confidence in the system. This section discusses several practices related to an

autonomous system’s test strategy, which help to enable the effective, efficient, and robust T&E

of autonomous systems:

LVC testing.

Experimentation T&E.
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e Surrogate platforms.
e Formal verification methods.
e Adversarial testing.

e Post-acceptance testing.

These practices may not apply to every autonomy program, but where implemented, they help
enable successful T&E of autonomous systems with reduced costs and time.

5.3.1 Live, Virtual, and Constructive Testing

An increasingly useful method for DoD testing in recent years has been LVC testing, which is
emerging as a proven method for the T&E of autonomous systems. LVC offers a powerful and
flexible approach to assess these complex systems across a range of operational environments
and scenarios, optimizing resources and minimizing risks.

Description of LVC Testing

LVC testing is a systems integration testing paradigm that incorporates a mix of real-world
(live), simulated (virtual), and emulated (constructive) components:

e Live (L) refers to the use of actual systems and real-world environments in testing, which
can include physical prototypes, operational personnel, and real-world locations.

e Virtual (V) refers to the use of simulated environments and systems, often involving
HITL interactions, that can provide realistic representations of complex scenarios and
allow for safe and controlled testing.

e Constructive (C) refers to the use of emulated or modeled systems, typically within a
synthetic environment, which allows for large-scale, complex scenarios to be tested
without the need for physical hardware or real-world locations.

Figure 5-7 depicts the use of LVC testing through the life cycle.
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Figure 5-7. Use of LVC Testing Through the Life Cycle

Details and Best Practices

Key features of LVC testing for the T&E of autonomous systems include:

Progressive integration: Begin with predominantly constructive elements and gradually
incorporate virtual and live components as the system matures to allow for early
identification of issues in a controlled environment.

Scenario variation: Utilize the flexibility of LVC to create a wide range of scenarios,
including normal operating conditions, edge cases, and failure modes, to ensure
comprehensive testing and robust system performance.

HITL testing: Incorporate virtual and live components to evaluate human-machine
interactions, assess operator workload, and refine human-machine interfaces.
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e Data collection and analysis: Implement robust data collection and analysis procedures
across all LVC domains to enable objective performance assessment, identification of
deficiencies, and validation of system requirements.

e Common interfaces: Utilize open standards and protocols to ensure seamless data
exchange between LVC components, using a “plug-and-play” approach that promotes
interoperability and facilitates the integration of diverse test assets.

e Leveraging existing resources: Utilize government-owned and -managed platforms and
frameworks for constructive simulation and testing whenever possible to optimize
resource utilization and reduce costs.

LVC is not a new concept, but its importance is growing because of the increasing complexity of
autonomous systems and the need for efficient and cost-effective testing. LVC provides a
comprehensive and adaptable approach to T&E by combining the strengths of each of the three
test processes.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of LVC testing for the T&E of autonomous
systems include the following:

e Primary outcomes:

o Enhanced system maturity. LVC enables rigorous testing across a wide range of
scenarios, leading to improved system reliability, safety, and performance. By
identifying and addressing potential issues early in the development life cycle, LVC
helps reduce risk and ensure successful system deployment.

o Accurate T&E insights. LVC provides valuable insights into the performance,
effectiveness, and suitability of autonomous systems by enabling the comprehensive
evaluation of autonomy tasks, components, subsystems, and capabilities.

e Additional benefits:

o Reduced development costs. By leveraging simulation and emulation, LVC can
reduce the need for expensive physical prototypes and real-world testing, leading to
significant cost savings.

o Increased test efficiency. LVC allows for the rapid iteration and testing of various
configurations and scenarios, accelerating the development process.

o Improved safety. LVC provides a safe and controlled environment for testing
potentially dangerous scenarios, minimizing risks to personnel and equipment.
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o Enhanced training. LVC simulations can be used to create realistic training
environments for operators, improving their skills and familiarity with the
autonomous system.

o Facilitated collaboration. LVC enables collaboration between different stakeholders,
including developers, testers, and end users, by providing a common platform for
T&E.

Costs, Limitations, and Assumptions

The use of LVC testing may have the following negative impacts:
e Simulation fidelity. Ensuring accurate representation of real-world environments and
system behavior within VC components can be challenging.

e Integration complexity. Integrating LVC components can be technically complex and
require specialized expertise.

e Cost of simulation tools. Acquiring and maintaining sophisticated simulation tools and
infrastructure can be expensive.

Tools and Resources

For more information and tools that support LVC and its benefits for the DT&E of autonomous
systems, see:
e Planning for LVC Simulation Experiments (Haase et al. 2014).

e Joint Test and Evaluation Methodology Overview (Bjorkman 2007).

Challenges Addressed by This Method

LVC testing helps to address several challenges for the T&E of autonomous systems including:

e T&E as a Continuum. LVC testing provides an integrated and iterative approach to
testing across different phases of development and operational evaluation, ensuring that
testing is not limited to isolated events but continuously informs system improvement.

e T&E of the OODA Loop. LVC enables evaluation of the autonomous systems’ ability to
observe, orient, decide, and act in dynamic environments by simulating realistic scenarios
and stimuli.

e Infrastructure. LVC can reduce the reliance on physical infrastructure for testing,
enabling a more efficient and cost-effective evaluation of autonomous systems.
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Personnel. LVC allows the testing of complex capabilities with minimum resources,
which include personnel support and expertise.

Exploitable Vulnerabilities. LVC facilitates the identification and mitigation of
vulnerabilities in autonomous systems by enabling comprehensive testing in diverse
scenarios, including adversarial attacks.

Safety. LVC provides a safe and controlled environment for testing potentially hazardous
autonomous systems, mitigating risks to personnel and equipment.

Ethics. LVC allows for the examination of ethical considerations, such as bias, decision-
making transparency, and compliance with rules of engagement, helping to shape ethical
guidelines for autonomous system deployment.

HAT. LVC supports the evaluation of human-machine interactions and the development
of effective HAT strategies.

Black Box Components. LVC can help to understand and evaluate the behavior of black
box components within autonomous systems by observing their interactions with other
system elements in various scenarios.

Mission Evolution. LVC testing enables systems to be efficiently tested under various
mission profiles and conditions, ensuring adaptability as mission requirements evolve.

Dynamic Learning. LVC allows for controlled evaluations of autonomous systems with
learning components, ensuring that adaptive behaviors align with mission objectives and
do not introduce unintended consequences.

T&E Adequacy and Coverage. LVC facilitates comprehensive testing across a wide
range of scenarios, improving the adequacy and coverage of T&E efforts.

Autonomy Integration and Interoperability. LVC supports the evaluation of how well
autonomous systems integrate and interoperate with other systems in a complex
environment.

Experimentation Test and Evaluation

Experimentation T&E is becoming more common across DoD as prototyping and

experimentation proliferate. For autonomous systems, it emphasizes real-world data collection

and analysis to drive system development and validation, particularly for systems with emergent

behaviors operating in complex environments. Experimentation T&E is not about certification or

evaluating knowns; it is a process of discovery, exploring unknowns and informing future

decisions.
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Description of Experimentation T&E

Experimentation T&E:

e I[san iterative process of designing, executing, and analyzing experiments in
operationally relevant conditions to assess early capabilities and limitations of
autonomous systems.

e Exposes the system to a range of scenarios, including edge and corner cases, to
understand its performance and to uncover unexpected behaviors and vulnerabilities.

e Does not aim to confirm specifications—unlike traditional T&E—but to reveal unknowns
and inform future development.

Details and Best Practices

Key features of experimentation T&E for autonomous systems include:

e Scenario-based testing: Develop diverse and representative scenarios that cover the
expected operational domain, including nominal, off-nominal, and adversarial conditions.

e Data-driven analysis: Utilize comprehensive data collection and analysis techniques to
evaluate system performance, identify failure modes, and track progress over time. Types
of data include sensor data, internal system states, and performance metrics.

e [terative refinement: Employ a continuous loop of testing, analysis, and refinement to
progressively improve system capabilities and address identified shortcomings, allowing
for adaptive test strategies and efficient use of resources.

e MA&S: Leverage simulations and modeling to complement real-world testing, explore a
broader range of scenarios, and reduce reliance on expensive or dangerous physical tests.

e Collaboration: Foster collaboration between testers, developers, and operational users to
ensure that experiments are relevant, informative, and aligned with user needs in defining
objectives and interpreting results.

e Flexibility and rigor: Maintain test flexibility to accommodate evolving requirements
while maintaining sufficient rigor to answer the experiment’s core questions.

e Acceptance of technical risk: Acknowledge and document the higher technical risks often
associated with experimentation involving unproven technologies and methodologies,
informing future experiments and decision-making.

e Test planning: Develop test plans that focus on exploring ideas and specific technology
employment rather than just requirements. Traditional test plans are often requirements
based; in experimentation, requirements may be fluid or nonexistent. Use objectives such
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as “Explore the ...” or “Perform the ... experiment.” Success criteria should be flexible,
and evaluation criteria may evolve during the experiment.

e Technical reporting: Focus reporting on revealing the experiment methodology,
answering the experiment question, and increasing knowledge. Traditional rating scales
may need careful tailoring. Recommendations may include continued research, lessons
learned, and partnering with OT to bridge the gap between experimentation and
acquisition.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of experimentation T&E for autonomous systems
include the following:
e Primary outcome:

o Informed decision-making: Provides decision-makers with data-driven insights into
the system’s capabilities, limitations, and potential for operational use to support
decisions on future development, acquisition, and deployment.

e Additional benefits:

o Early identification of issues: Uncovers design flaws, performance limitations, and
safety concerns early in the development life cycle.

o Accelerated development cycle: Facilitates rapid iteration and learning by providing
continuous feedback on system performance.

o Enhanced user understanding: Improves user understanding of the system’s
capabilities and limitations, leading to more effective training and HMT.

o Increased transparency and trust: Builds trust in the system’s capabilities by
providing stakeholders with clear and objective evidence of the system’s
performance.

Costs, Limitations, and Assumptions

The use of experimentation T&E may have the following negative impacts:
e Resource intensiveness: This method requires significant investments in time, personnel,
test infrastructure, and data analysis capabilities.

e Test environment limitations: The creation of realistic and representative test
environments can be challenging.
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e Data bias: Test data may be biased or incomplete because of experimentation with
limited conditions, potentially leading to inaccurate conclusions.

Tools and Resources

For more information and tools that support experimentation T&E and its benefits for the DT&E
of autonomous systems, see the DoD Experimentation Guidebook.

Challenges Addressed by This Method

Experimentation T&E helps to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Experimentation T&E allows for iterative learning and
refinement throughout the system life cycle, helping adapt to evolving requirements and
technology.

e Data. Experimentation T&E generates data to inform effective data management and
analysis techniques, which can be reused in more comprehensive follow-on tests.

e HAT. Experimentation T&E facilitates the evaluation of human-machine interactions in
operationally relevant contexts and provides insights into effective teaming strategies and
potential challenges.

e Test Adequacy and Coverage. Experimentation T&E expands the breadth of testing
beyond predefined requirements by exposing the system to a wider range of scenarios,
including edge cases, emergent behaviors, and unforeseen conditions.

e Autonomy and Interoperability. Experimentation T&E supports the assessment of how
autonomous systems interact with other autonomous and nonautonomous platforms in a
joint operational environment, identifying potential gaps in integration and coordination.

5.3.3  Surrogate Platforms

A valuable approach for the T&E of autonomous systems is the use of surrogate platforms. This
method employs stand-ins to represent the actual system or environment, facilitating
comprehensive testing in a controlled and safe setting.

Description of Surrogate Platforms

Surrogate platforms for the T&E of autonomous systems involve the use of substitute systems,
simulations, or environments in place of the actual autonomous system or its intended
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operational environment, allowing testers to assess and refine autonomous system capabilities
before testing with new assets.

Details and Best Practices

Key features of surrogate platforms for the T&E of autonomous systems include:

e Early problem identification. By utilizing surrogate platforms, the potential design flaws,
safety concerns, and performance limitations can be identified and addressed early in the
development life cycle.

e Flexible system representation. A surrogate can be chosen or modified to meet the unique
needs of the autonomy software. A mature surrogate allows for testing the autonomy
software independent from the integrated operational system.

e Reduced risk and increased data quality. Well-characterized surrogates with known
dynamics, payloads, instrumentation, and interfaces support safer, cheaper, faster, and
more effective development; mitigate platform risk; and lead to reduced integration costs
and increased speed, ultimately yielding higher-quality data.

e Standardized testbeds. Utilizing standardized government-owned testbeds and test
surrogates that are well-characterized, are highly available, and include instrumentation
can streamline the T&E process.

e Common interfaces. Common interfaces are crucial for “plug-and-play” compatibility,
enabling seamless transitions between platforms to demonstrate increasing maturity and
provide a streamlined risk mitigation ramp from low-cost to high-cost surrogates.

e Scalable complexity. Autonomy can be stimulated using state data from a simple foam
remote-controlled hobby aircraft or a complex platform such as a QF-16. Effective use of
surrogates could involve a progression from simulated physics models to low-cost small
unmanned aircraft systems (such as the RQ-23A TigerShark), and then to complex
fighter surrogates (such as the X-62A VISTA), before final integration with the
operational platform.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of surrogate platforms for the T&E of autonomous
systems include the following:

e Primary outcomes:
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o Enhanced system reliability and safety. Early surrogate testing leads to improved
system robustness, reduces unexpected behaviors, and minimizes the potential risks
associated with autonomous systems T&E.

o Accelerated development cycles. Early identification of issues through surrogate
testing allows for the rapid iteration and refinement of system design and capabilities.

e Additional benefits:

o Reduced development costs. Surrogate platforms reduce the need for extensive field
testing and minimize potential damage to expensive prototypes.

o Facilitated collaboration. Surrogate platforms provide a common framework for
developers, testers, and stakeholders to collaborate and evaluate system performance.

o Enhanced understanding of system behavior. Detailed data analysis from surrogate
testing provides valuable insights into system behavior, aiding in the refinement of
algorithms and decision-making processes.

Costs, Limitations, and Assumptions

The use of surrogate platforms may have the following negative impacts:
e Simulation fidelity. The accuracy and realism of surrogate platforms compared with the
intended final platform may not support universally meaningful test results.

e [Initial investment. Developing and maintaining sophisticated surrogate platforms can
require significant upfront investment.

e Technical expertise. Implementing and utilizing surrogate platforms effectively
necessitates specialized expertise in those platforms and their limitations.
Tools and Resources

Future updates to this guidebook will provide additional information and tools that support
surrogate platforms and their benefits for the DT&E of autonomous systems, including resource
information from DoD test centers on available test surrogate platforms.

Challenges Addressed by This Method

Surrogate platforms help to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Surrogate platforms support a continuous T&E process, allowing
for iterative T&E throughout the development life cycle.
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e T&E of the OODA Loop. Surrogate platforms allow evaluation of the observe, orient,
decide, and act process in realistic but controlled environments, ensuring that
autonomous decision-making can be assessed before deployment.

e Personnel. Surrogate platforms reduce the burden on personnel by allowing for early
autonomy evaluations in testbeds, decreasing the reliance on operators and warfighters
for live testing.

e Safety. Surrogate platforms enable safe and controlled testing of autonomous systems
with potentially unexpected behaviors, minimizing the risks to personnel and equipment.

e HAT. Surrogate platforms facilitate the evaluation of HAT concepts, allowing for the
assessment of collaboration and interaction between human operators and autonomous
systems.

5.34 Formal Verification Methods

Formal verification is a mathematically rigorous technique used to prove or disprove the
correctness of a system’s design with respect to a certain formal specification or property. This
method is particularly relevant for autonomous systems where safety and reliability are
paramount.

Description of Formal Verification

Formal verification involves the use of mathematical techniques to prove the correctness of a
system’s design.

e Exhaustive analysis. Unlike traditional testing that relies on sampling system behaviors,
formal verification aims to analyze all possible states and transitions within a system.

e Mathematical proof. Formal verification provides a mathematical proof that the system
will behave as intended under all circumstances defined by the specification.

Details and Best Practices

Key features of formal verification for the T&E of autonomous systems include:

e Model checking: Building a finite model of the system and using automated tools to
check whether the model satisfies desired properties. Model checking is particularly
useful for verifying safety-critical aspects of autonomous behavior.

e Theorem proving: Using interactive software tools to construct a mathematical proof that
the system design adheres to its formal specifications. This approach allows for the
verification of complex systems and intricate properties.
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e Static analysis: Employing techniques to analyze the system’s code or design without
executing it. Static analysis can help identify potential issues such as deadlocks, race
conditions, or buffer overflows early in the development cycle.

¢ Runtime verification: Monitoring the system’s behavior during operation to ensure that it
conforms to the specified properties. Runtime verification complements other formal
verification techniques by providing real-time assurance.

e Contributing evidence: Using formal verification to contribute to the evidence needed for
autonomous system assurance, along with T&E results, as part of a larger assurance case
argument (see Section 5.2.7 for more information on assurance cases).

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of formal verification for the T&E of autonomous
systems include the following:
e Primary outcomes:

o Increased confidence: Providing a high level of assurance that the system behaves as
intended, minimizing the risk of unexpected or hazardous actions.

o Early detection of defects: Identifying design flaws and potential errors in the early
stages of development, reducing the cost and effort of fixing them later.

e Additional benefits:

o Improved system safety: Rigorously verifying safety-critical aspects, leading to more
dependable and trustworthy autonomous systems.

o Reduced development costs: Detecting errors early to significantly reduce the costs
associated with debugging and rework.

o Enhanced system reliability: Ensuring the system’s consistent and predictable
behavior, even in complex and unforeseen situations.

o Facilitated certification: Providing evidence of compliance with safety standards and
regulations, easing the certification process.

o Improved communication: Using formal specifications to serve as a precise and
unambiguous means of communication between stakeholders.

o Increased trust: Providing verifiable guarantees about the system’s behavior,
increasing user trust and acceptance.
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Costs, Limitations, and Assumptions

The use of formal verification may have the following negative impacts:

e High initial investment: Requires specialized expertise and tools, which can be expensive
to acquire and maintain.

e Scalability challenges: Can become computationally expensive for very large and
complex systems.

e Applicability limitations: May not be suitable for all aspects of autonomous systems,
particularly those involving complex interactions with the physical world.

Tools and Resources

For more information and tools that support formal verification and its benefits for the DT&E of
autonomous systems, see the Defense Advanced Research Projects Agency (DARPA) published
research on the High-Assurance Cyber Military Systems (HACMS) Website
(https://www.darpa.mil/research/programs/high-assurance-cyber-military-systems).

Challenges Addressed by This Method

Formal verification helps to address several challenges for the T&E of autonomous systems
including:

¢ Requirements. Formal verification precisely captures and analyzes system requirements,
ensuring that they are complete, consistent, and unambiguous. This approach reduces the
risk of misinterpretations and errors arising from ambiguous or incomplete requirements.

¢ Exploitable Vulnerabilities. Formal verification supports the mitigation of security risks
by proving high assurance of consistent and correct behavior.

e Safety. Formal verification provides strong guarantees about the system’s safety by
mathematically proving its adherence to safety requirements, mitigating the risk of
accidents and malfunctions.

e Test Adequacy and Coverage. Formal verification complements traditional testing by
providing a more exhaustive analysis of the system’s behavior. It helps identify potential
issues that might be missed by test cases, improving test coverage and increasing
confidence in the system’s reliability.
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5.3.5 Adversarial Testing

Adversarial testing uses simulated adversary forces and Al to identify system vulnerabilities and
assess potential impacts. This method helps ensure that autonomous systems are resilient against
threats and adaptable to hostile environments.

Description of Adversarial Testing

Adversarial testing involves simulating adversarial conditions to understand system
vulnerabilities:
e Adversarial Al and simulated threats probe weaknesses and identify failure points.

e Impact analysis evaluates the consequences of potential system breaches or malfunctions
to understand operational risks.

Details and Best Practices

Key features of adversarial testing for the T&E of autonomous systems include the following:
e Cyclical vulnerability testing routinely evaluates system and attack surfaces using diverse
attack vectors, adapting as system insights evolve.

e Simulated adversary scenarios implement realistic adversary Al to replicate potential
threats, assessing system responses to a range of hostile conditions.

e Layered defense validation verifies the effectiveness of built-in defenses and
countermeasures, ensuring system resilience against multiple types of attacks.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of adversarial testing for the T&E of autonomous
systems include the following:
e Primary outcomes:

o Enhanced system resilience and performance in contested environments with
unpredictable adversaries.

o Identification and mitigation of vulnerabilities, strengthening system readiness for
real-world threats.

e Additional benefits:

o Improved mission-based risk assessment by understanding the operational impact of
system weaknesses against a full spectrum of threats.
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o Support for mission planning by revealing likely adversary tactics and response
strategies.

o Contributions to iterative system improvement by documenting adversarial
interactions and system responses.

o Early identification of necessary system upgrades or modifications to counter
potential threats.

Costs, Limitations, and Assumptions

The use of adversarial testing may have the following negative impacts or trade-offs:
e Assumptions about adversary behavior that may not fully represent real-world threats,
impacting test effectiveness.

e Cost of infrastructure and personnel to design, manage, and maintain adversarial testing
assets and tools.

e Potential for increased system wear and stress from repeated adversarial scenarios, which
may require additional systems for testing.

Tools and Resources

For more information and tools that support adversarial testing and its benefits for the DT&E of
autonomous systems, see the technical paper, “Simulation-based Adversarial Test Generation for
Autonomous Vehicles with Machine Learning Components” (Tuncali et al. 2018).

Challenges Addressed by This Method

Adversarial testing helps to address several challenges for the T&E of autonomous systems
including:

e T&E of the OODA Loop. Adversarial testing enables insights into decision-making
speed and adaptability under adversarial conditions.

e Exploitable Vulnerabilities. Adversarial testing identifies potential weak points by
probing system defenses and responses to hostile forces.

e Black Box Components. Adversarial testing evaluates the reliability and resilience of
system outputs and responses when internal processes are obscured, ensuring robust
performance despite limited visibility.

e Mission Evaluation. Adversarial testing evaluates system performance in simulated
contested environments to ensure mission success under real-world threat scenarios.
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¢ Dynamic Learning. Adversarial testing supports iterative improvements by documenting
adversary interactions, enhancing the system’s adaptability over time.

5.3.6 Post-Acceptance Testing

Future autonomous systems will likely require post-acceptance testing in operationally relevant
environments after the system has been accepted for fielding. The complexity of the systems’ use
cases often makes complete testing impossible before deployment, and many high-consequence
failures occur at very low frequencies. This fact necessitates a shift from the traditional DoD
T&E paradigm of separate developmental and operational testing to a continuous evaluation
process throughout the system life cycle.

Description of Post-Acceptance Testing

Post-acceptance testing involves operational realistic data-driven assessments, including red
teaming, of the autonomous system after it has been fielded, supplemented by continuous
monitoring to assess its performance and identify any deficiencies that may not have been
apparent during earlier testing phases.

Details and Best Practices

Key features of post-acceptance testing for the T&E of autonomous systems include:

¢ Continuous monitoring: Implementing continuous monitoring of the fielded system’s
performance using data logging, telemetry, and user feedback to allow for the
identification of emerging issues and long-term performance trends.

e Simulated operational scenarios: Conducting regular testing in realistic operational
scenarios, including edge cases and challenging environments, to assess the system’s
resilience and adaptability.

e Red teaming: Employing dedicated red teams to actively try to exploit vulnerabilities or
induce failures in the fielded autonomous system, providing valuable insights into
potential weaknesses.

e Data-driven assessment: Utilizing the data collected during OT to perform detailed
analysis of the system’s performance, enabling data-driven assessments and
improvements.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of post-acceptance testing for the T&E of
autonomous systems include the following:
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e Primary outcome:

o Enhanced system trustworthiness. Identifying and mitigating issues that emerge only
in real-world operational environments leads to significant improvements in the
reliability and safety of the autonomous system.

e Additional benefits:

o Increased user confidence. Demonstrating the system’s capabilities in realistic
operational settings fosters trust and confidence among users and other stakeholders.

o Improved operational effectiveness. Continuous evaluation and refinement based on
real-world data enhance the system’s overall operational effectiveness.

o Accelerated technology maturation. Testing in operational environments provides
valuable feedback for future development cycles, accelerating the maturation of
autonomous system technologies.

o Reduced life cycle costs. Early identification and resolution of issues in the field can
reduce costly maintenance and upgrades down the line.

o Enhanced training and doctrine development. Data and insights gained from OT can
be used to inform and improve training programs and operational doctrine.

Costs, Limitations, and Assumptions

The use of post-acceptance testing may have the following negative impacts:
e Resource intensiveness. This method requires the ongoing commitment of resources,
including personnel, infrastructure, and data analysis capabilities.

e Potential for operational disruption. Testing in operational environments may temporarily
disrupt normal operations.

e Data security and privacy concerns. Collecting and analyzing data from fielded systems
raises concerns about data security and privacy that must be addressed.

Tools and Resources

For more information and tools that support post-acceptance testing and its benefits for the
DT&E of autonomous systems, see the DAU Post-Implementation Review
Website. (https://www.dau.edu/glossary/post-implementation-review).
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Challenges Addressed by This Method

Post-acceptance testing helps to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Post-acceptance testing reinforces the concept of T&E as a
continuous process that extends beyond initial development and fielding, ensuring
ongoing evaluation and improvement throughout the system’s life cycle.

e T&E of the OODA Loop. Post-acceptance testing enables real-world evaluation of how
the system processes observations, makes decisions, and takes actions in dynamic
operational environments.

e Personnel. Post-acceptance testing assesses operator interactions, workload, and HAT
effectiveness in operational settings, refining training and doctrine.

o Exploitable Vulnerabilities. Post-acceptance testing identifies previously unknown
vulnerabilities that may emerge only in real-world use, enabling mitigation strategies to
be implemented proactively.

e Ethics. Post-acceptance testing provides ongoing evaluation of ethical considerations,
such as unintended biases in decision-making, compliance with rules of engagement, and
impact on human oversight.

¢ Black Box Components. Post-acceptance testing monitors and analyzes system behavior
in operational environments to uncover hidden dependencies, emergent behaviors, and
decision-making anomalies.

e Mission Evolution. Post-acceptance testing allows for evaluation of the system’s ability
to adapt to evolving mission requirements and changing operational contexts.

¢ Dynamic Learning. Continuous monitoring and evaluation during post-acceptance
testing enable dynamic learning from real-world performance, facilitating ongoing
adaptation and improvement of the autonomous system.

e Test Adequacy and Coverage. Testing in operational environments with diverse
scenarios and edge cases enhances test coverage and helps ensure the system’s adequacy
for its intended mission.

5.4 Test Planning

Test planning for autonomous systems can be very challenging. Effective test planning is
incredibly valuable if it can address challenges such as safety, security, and human teaming,
while speeding the development and fielding of highly capable systems. This section discusses
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several practices related to test planning for an autonomous system, which help to enable
effective, efficient, and robust T&E:

e Al model testing and metrics.

e STPA for autonomy.

e HAT performance methods and measures.

e Automatic domain randomization.

e Automated outlier search and boundary testing.

e Failure path testing.

These practices may not apply to every autonomy program, but where implemented, they help
enable successful T&E of autonomous systems with reduced costs and time.

541 Artificial Intelligence Model Testing and Metrics

Al models are increasingly critical to the operation of autonomous systems, enabling capabilities
such as perception, planning, and decision-making. The T&E methods and metrics for testing Al
models are different from those used for traditional system components in many ways. Al model
testing and metrics should inform and complement fully integrated autonomous systems T&E.

Description of Al Model Testing and Metrics

The Al model testing and metrics method is a systematic approach to evaluating the performance
of Al models used in autonomous systems that includes designing specific test cases, collecting
performance data, and applying relevant metrics to assess the model’s effectiveness and identify
areas for improvement. It emphasizes continuous testing and monitoring throughout the system’s
life cycle to account for the inherent uncertainties and complexities associated with Al

Details and Best Practices

Key features of AI model testing and metrics for the T&E of autonomous systems include:

e Data management for Al model development and testing: Ensure that the Al test team
appropriately partitions the dataset used for ML in accordance with Al T&E best
practices.

o Training data: Utilize large, diverse, and representative datasets for training Al
models. Ensure data quality, address biases, and document data sources and
preprocessing steps.
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o Test data: Employ separate test datasets that are independent of the training data to
evaluate the model’s generalization ability to unseen data. Regularly update test data
to reflect evolving operational conditions and potential threats.

o Validation data: Utilize a validation dataset to fine-tune model hyperparameters and
prevent overfitting to the training data. Validation tuning helps ensure that the
model’s performance generalizes well to new data.

Model-in-the-loop simulation: Evaluate the Al model’s performance by testing in a
controlled setting within a simulated environment before hardware integration.

Scenario-based testing: Create realistic scenarios to assess the model’s robustness to
identify potential failures and limitations.

Performance metrics: Utilize quantitative measures such as accuracy, precision, recall,
F1-score, and latency to assess specific aspects of the Al model’s capabilities, providing
objective evidence of the model’s effectiveness.

Data-driven evaluation: Employ diverse and representative datasets, encompassing
various operational conditions, environments, and potential biases, to ensure
comprehensive testing.

Test case design: Develop test cases that cover both nominal and off-nominal scenarios,
including unexpected inputs, sensor failures, and adversarial attacks, to evaluate the
model’s resilience.

Continuous monitoring: Implement ongoing monitoring and evaluation of the Al model’s
performance during development, testing, and deployment to track progress, identify
regressions, and inform retraining efforts. Continuous monitoring is crucial because of
the evolving nature of Al models and the impossibility of exhaustive pre-deployment
testing.

Documentation and reporting: Maintain detailed records of test procedures, datasets,
metrics, and results to ensure traceability, reproducibility, and accountability.

Formalized risk acceptance: Clearly document risk tolerance and specify acceptable
ranges of behavior before deployment. This approach helps manage evaluation
expectations and supports informed decisions about autonomous system deployment
when communicated to users and decision-makers.

Ontological standards: Utilize ontological standards, such as those provided by IEEE, to
formalize assumptions and deployment conditions. Standards ensure a common
understanding of the system’s operating environment and interactions.
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Primary Outcome and Additional Benefits

The primary outcome and additional benefits of AI model testing and metrics for the T&E of
autonomous systems include the following:

e Primary outcome:

o Evidence supporting the integrated system’s test and use: Providing objective
evidence of the Al model’s effectiveness and robustness, supporting informed
decision-making regarding the integrated autonomous system’s evaluation,
deployment, and operational use.

e Additional benefits:

o Enhanced system reliability: Identifying and mitigating potential failures or
limitations in the AI model’s performance, leading to the improved safety and
dependability of the autonomous system.

o Accelerated development cycles: Enabling early detection of defects and performance
bottlenecks, facilitating the rapid iteration and refinement of the AI model.

o Reduced development costs: Minimizing the risk of costly failures or rework by
identifying and addressing issues early in the development process.

o Improved system performance: Optimizing the Al model’s performance through data-
driven insights and iterative refinement, leading to enhanced capabilities and
efficiency.

o Facilitated regulatory compliance: Providing evidence of compliance with safety and
performance standards, supporting certification and approval processes.

Costs, Limitations, and Assumptions

The use of Al model testing and metrics may have the following negative impacts:
e Resource intensiveness. This method requires significant computational resources, data,
and expertise to design and execute comprehensive test campaigns.

e Test coverage limitations. It may be challenging to achieve complete test coverage
because of the complexity of real-world scenarios and the potential for unforeseen events.

e Metric selection challenges. Choosing appropriate metrics that accurately reflect the
desired capabilities and performance criteria can be complex and context dependent.
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Tools and Resources

For more information and tools that support AI model testing and metrics and their benefits for
the DT&E of autonomous systems, see:

e DT&E of Al-Enabled Systems Guidebook.

e DARPA Assured Autonomy Website (https://www.darpa.mil/program/assured-
autonomy).

e [EEE Standards Association Website (https://standards.ieee.org/).

Challenges Addressed by This Method

Al model testing and metrics help to address several challenges for the T&E of autonomous
systems including:

e T&E as a Continuum. Al model testing and metrics support an iterative and continuous
testing process, ensuring that Al models are evaluated throughout their life cycle and
continuously refined as new data and operational conditions emerge.

e T&E of the OODA Loop. Al model testing and metrics provide evidence for evaluating
the performance of Al models within the OODA loop, evaluating how the system can
effectively perceive, process information, and make decisions in dynamic environments.

e Personnel. This method ensures that Al testing teams are equipped with the appropriate
tools and methodologies to evaluate Al models, reducing the reliance on highly
specialized expertise while improving training for Al T&E practitioners.

e Exploitable Vulnerabilities. Al model testing and metrics identify weaknesses in Al
models, such as susceptibility to adversarial attacks, bias, and data poisoning, allowing
mitigation strategies to be developed before deployment.

¢ Black Box Components. Al model testing and metrics promote the use of explainability
and interpretability techniques to understand and evaluate the reasoning process of Al
models, even when their internal workings are not fully transparent.

¢ Dynamic Learning. Al model testing and metrics support the evaluation of Al models
that continuously learn and adapt, ensuring that their performance remains reliable and
safe as they encounter new data and situations.

5.4.2 System-Theoretic Process Analysis for Autonomy

STPA is a hazard analysis method grounded in systems theory. STPA is based on the Systems-
Theoretic Accident Model and Processes (STAMP), which is a modern accident causation model

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
141


https://www.darpa.mil/program/assured-autonomy
https://www.darpa.mil/program/assured-autonomy
https://standards.ieee.org/

5. Methods and Best Practices

that views safety as a dynamic control problem. STPA uses a top-down approach for analysis
and delivers qualitative results that can be used to guide the design of today’s complex
sociotechnical systems, including autonomous systems.

Description of STPA

The STPA Handbook (Leveson and Thomas 2018) describes the four steps in applying STPA, as
shown in Figure 5-8.

Step 1. Step 2. S JES
_ Identify Step 4.
Define the Model the Unsafe Identify Loss
Purpose of Control Control Scenarios
the Analysis Structure Actions

Figure 5-8. STPA Steps

Step 1: Define the Purpose of the Analysis. Identify the stakeholder losses, system-level hazards,
and corresponding system-level constraints. Loss is anything of value to a stakeholder including
mission-, safety-, security-, and resilience-related losses.

Step 2: Model the Control Structure. Model the as-is or to-be hierarchical control structure,
which is composed of feedback and control loops needed to ensure that hazardous states are
avoided. As shown in Figure 5-9, the control structure is a graphical depiction of the system
components (controllers and controlled processes) and the interactions between them in terms of
control actions, feedback, and other interactions such as coordination with another controller.
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Figure 5-9. Generic Hierarchical Control Structure
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Step 3: Identify Unsafe Control Actions. Given the control structure, Step 3 identifies unsafe
control actions (UCAs) that can lead to hazardous states. Four UCA categories may lead to
hazards: (1) not providing the control; (2) providing the control; (3) providing the control too
early, too late, or in the wrong order; and (4) providing the control too long or too short. Step 3
also identifies the UCA’s corresponding controller-level constraints.

Step 4: Identify Loss Scenarios. The practitioner identifies loss scenarios, or causal factors, that
may lead to UCAs and hazardous states. This step benefits from having a deeper understanding
of the system under investigation and system component interactions and provides a more
detailed abstraction level than Step 3. The causal scenarios can be used to influence design and
describe constraints needed to ensure desired system behavior.

Details and Best Practices

A case study of STPA (Bowers and Thomas 2023) in the developmental flight test phase
demonstrated the use and benefits of applying STPA before flight testing a neural network-
controlled uncrewed air vehicle.

e A team of experts conducted STPA after mandated airworthiness and safety processes but
before actual flight test to ensure safe flight test execution.
e STPA findings from examining the human-autonomy system include the following:
o Autonomy multi-axis flight control inputs may lead to hazardous scenarios.
o The unmanned system envelope protection was inadequate.
o Handoff procedures between human and autonomy were in some cases ambiguous.
o Safety transition maneuver from autonomy to human may not be so safe.

¢ In summary, the team uncovered an additional 50 safety-critical issues that led to
processing 49 changes to the flight test procedures.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of STPA for the T&E of autonomous systems
include the following:

e Primary outcome:

o Risk management. STPA is a top-down approach for analysis with qualitative results
that can guide the design and testing of autonomous systems, managing and
mitigating risks.
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e Additional benefits:

o Flexible applications. STPA is well-suited for the analysis of humans, software,
human-machine interactions, and organizational influences.

o Multidimensional analysis. STPA can identify safety concerns from flawed design
and component behaviors, in addition to component failures.

Costs, Limitations, and Assumptions

The use of STPA may have the following negative impacts or trade-offs:
e Because of the qualitative nature of STPA, there may be a wide discrepancy in the quality
of results, influenced by STPA methodology expertise and domain expert participation.

e Risk in terms of probability and severity is not a direct output of STPA, though risk
assessments can be integrated into or derived from STPA results.

Tools and Resources

For more information and tools that support STPA and its benefits for the DT&E of autonomous
systems, see:
e STPA Handbook (Leveson and Thomas 2018).

e Massachusetts Institute of Technology (MIT) Partnership for Systems Approaches to
Safety and Security (PSASS) Website (https://psas.scripts.mit.edu/home/), which is an
online repository for STPA-related material.

e Additional STPA guidance for autonomy teaming and coordination:
o Systems-Theoretic Safety Analyses Extended for Coordination (Johnson 2017).

o System-Theoretic Safety Analysis for Teams of Collaborative Controllers (Kopeikin
2024).

e Guidance for the security of autonomy:

o Basic Introduction to STPA for Security (Young 2020).
Challenges Addressed by This Method
STPA helps to address several challenges for the T&E of autonomous systems including:

¢ Requirements. STPA identifies gaps or ambiguities that could lead to unsafe behaviors
in autonomous systems.
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Infrastructure. STPA supports the structured analysis of complex system architectures,
ensuring that control structures, communication pathways, and interdependencies are
well understood to improve test infrastructure design.

Exploitable Vulnerabilities. STPA identifies systemic weaknesses and potential failure
modes that could be exploited, ensuring that both security and safety concerns are
addressed holistically.

Safety. STPA provides a top-down approach to hazard analysis, identifying UCAs and
causal scenarios that traditional risk-based methods may overlook.

HAT. STPA evaluates human-autonomy interactions, uncovering potential mismatches
in expectations, ambiguous control transitions, and risks arising from human oversight or
intervention.

Test Adequacy and Integration. STPA ensures that testing covers not only component-
level failures but also emergent risks stemming from system interactions, providing a
more comprehensive evaluation of autonomous system behaviors.

Autonomy Integration and Interoperability. STPA assesses how autonomous systems
coordinate within larger SoS environments, ensuring that safety constraints and control
dependencies are effectively managed across multiple agents.

Human-Autonomy Team Performance Methods and Measures

HAT performance methods and measures are essential for assessing and improving the mission

effectiveness of autonomous systems. These methods focus on evaluating key factors between

humans and autonomy, such as situational awareness, role clarity, communication, and

collaboration to ensure effective and reliable team dynamics.

Description of HAT Performance Methods and Measures

HAT performance methods and measures include:

Role clarity and control allocation methods to establish clear, testable requirements and
guidelines for authority, responsibility, and handoff protocols between human operations
and autonomous systems to reduce risk and increase mission success.

Situational awareness measures of perception, comprehension, and projection of future
states to evaluate how well human and autonomous team members perceive and interpret
the situation, enabling improved projection of and response to future states.

Collaboration and communication measures to evaluate how timely, necessary
information is shared and to encourage proactive and responsible behaviors in both
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human and autonomous systems, fostering coordinated actions and maintaining shared
goals.

Details and Best Practices

Key features of HAT methods for the T&E of autonomous systems include:

e Leveraging mission engineering: Provide the scope of the human factors and HSI
evaluations necessary to measure the contributions to mission outcomes for total system
effectiveness at a mission level.

e Employing standardized metrics for situational awareness and role clarity: Utilize
established T&E metrics to assess operator(s) and system(s) perception, comprehension,
and projection within their environment, supporting consistency and comparability across
evaluations.

e Conducting controlled testing of human-system communication and intent: Employ
specific measures for observing implicit and explicit communication cues (e.g., gestures,
speech, visual indicators) to evaluate how effectively intent is communicated between
human and autonomous team members.

e Developing adaptive testing frameworks for varying operator states: Incorporate adaptive
metrics that account for human factors such as stress, workload, and fatigue, ensuring that
HAT performance remains stable across different operator conditions.

e Tailoring testing based on human interaction levels: Use HITL, HOTL, and HOOTL
system testing, understanding that the systems differ in their best testing practices.

o HITL system testing should focus on evaluating the user interface, ensuring that it
effectively communicates the system’s recommendations and allows humans to make
informed decisions.

o HOTL system testing should include assessing the system’s ability to detect
anomalies and alert humans, as well as evaluating the human’s ability to respond
effectively to these alerts.

o HOOTL system test activities center on verifying the system’s ability to operate
reliably, within the scope of the human’s commanded intent, and make accurate
decisions without human intervention.

¢ Understanding human decision-making: Develop a deep understanding of how humans
make decisions in complex, dynamic environments and how autonomy agents can
support or hinder this process.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
146



5. Methods and Best Practices

e Assessing human-autonomy collaboration: Evaluate the effectiveness of human-
autonomy collaboration, including the exchange of information, coordination of actions,
and resolution of conflicts or errors. Useful test metrics may include accuracy, response
time, and degree of meeting the commander’s intent or human instructions.

¢ [Evaluating human performance in context: Develop metrics and methods to assess human
performance within the context of HMT, considering factors such as cognitive load,
situational awareness, and decision-making.

e Applying human-centered T&E methods: Prioritize the human element of performance
contribution, incorporating human-centered evaluation objectives.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of HAT methods for the T&E of autonomous
systems include the following:

e Primary outcome:

o Evaluation of trustworthiness: Characterization of human-autonomy interactions,
enabling appropriately calibrated trust and cohesion between human operators and
autonomous systems, improving team effectiveness and mission outcomes by
establishing reliable, transparent interactions.

e Additional benefits:

o Risk management: Reduced operational risk through rigorous assessment of shared
situational awareness, role clarity, and control protocols, leading to more predictable
and safe autonomous behaviors.

o Operational assurance: Improved adaptability and resilience by enabling systems to
respond effectively to human states, such as stress and workload, ensuring stable
performance across diverse conditions.

Costs, Limitations, and Assumptions

The use of HAT may have the following negative impacts or trade-offs:

e [Evaluating factors such as communication cues, trust calibration, and role transitions in
HAT introduces additional complexity, increasing the time and resources needed for
thorough analysis.
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HAT methods rely on assumptions regarding predictable and generalizable human
responses and stable systems behaviors, which may not hold true in dynamic or stress-
intensive environments, potentially impacting test reliability.

Significant investment is required to validate and verify situational awareness, role
clarity, and trust metrics within HAT, necessitating specialized personnel and
infrastructure.

Test environments and scenarios may differ based on human involvement in various
tasks, with HITL and HOTL often requiring simulated or controlled environments,
whereas HOOTL systems may require more realistic and dynamic testing scenarios for
robustness in operational contexts.

Testing of autonomous systems with different levels of human interaction demands a
deep understanding of human factors, cognitive biases, attention, and decision-making
processes.

Tools and Resources

For more information and tools that support HAT performance methods and measures and their

benefits for the DT&E of autonomous systems, see:

Scientific Measurement of Situation Awareness in Operational Testing (Green et al.
2023).

Communicating Intent to Develop Shared Situation Awareness and Engender Trust in
Human-Agent Teams (Schaefer et al. 2017).

Trust Measurement in Human-Autonomy Teams: Development of a Conceptual Toolkit
(Krausman et al. 2022).

Challenges Addressed by This Method

HAT performance methods and measures help to address several challenges for the T&E of

autonomous systems including:

T&E as a Continuum. HAT performance methods and measures enable continuous
assessment and reuse of T&E tools to measure control, situational awareness, and
collaboration throughout the life cycle.

T&E of the OODA Loop. HAT performance methods and measures ensure effective
human insight into decision-making processes and projected future states for autonomous
systems.
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¢ Requirements. This method simplifies and standardizes the testing of HAT-related
metrics such as situational awareness and role clarity in human-autonomy interactions.

¢ Infrastructure. This method supports the development of test environments and
interfaces that facilitate HAT performance evaluation and human-system collaboration.

e Personnel. This method employs tailored HAT measures to provide test personnel with
clarity and rigor in autonomy test strategy, planning, and analysis.

e Safety. HAT performance methods and measures establish and evaluate standardized
protocols for safe and predictable interactions between human operators and autonomous
systems.

e Ethics. HAT performance methods and measures support transparent and ethical
interactions by providing measurable indicators for system awareness, predictability, and
other HAT objectives.

e HAT. HAT performance methods and measures define and evaluate standardized roles,
authority delegation, and expectations to enhance cohesion and performance.

e Dynamic Learning. This method provides measures of ongoing learning and HAT team
effectiveness as operator experience and system capabilities evolve.

e Autonomy Integration and Interoperability. HAT performance methods and measures
provide and evaluate standardized interfaces and protocols to ensure seamless integration
and effective interaction across diverse autonomous systems and human teams.

544 Automatic Domain Randomization

A method used in training ML models is automatic domain randomization. This method can also
enhance the T&E of autonomous systems by automatically generating variations that help
provide diverse and challenging test scenarios, which strengthen the system’s robustness and
readiness for real-world deployment.

Description of Automatic Domain Randomization

Automatic domain randomization leverages algorithms to automatically create variations in a test
or simulation environment, including alterations to environmental conditions, sensor parameters,
and the physical characteristics of objects and surroundings (location, speed/vector, size, etc.).
This technique exposes the autonomous system to a wide array of conditions, significantly
exceeding the practical limits of manual scenario generation. Automatic domain randomization
incorporates both environment and agent parameter randomization, providing a comprehensive
approach to testing.
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Details and Best Practices

Key features of automatic domain randomization for the T&E of autonomous systems include:

e Automated scenario generation. Automatic domain randomization algorithms
automatically generate numerous test scenarios, saving time and resources compared with
manual creation.

e Diversity of scenarios. Automatic domain randomization produces a wide range of
scenarios, including edge cases and unusual situations, which may be overlooked in
traditional testing.

e Fine-grained control. Automatic domain randomization allows for the introduction of
minor variations in input conditions, thereby mitigating unintended overtraining and
promoting the generalization of real-world disturbances.

¢ Dual parameter randomization. Automatic domain randomization includes both
environment randomized parameters (e.g., lighting, weather, terrain) and agent
randomized parameters (e.g., sensor noise, actuator limitations), providing a more holistic
evaluation.

e (Customization. Testers can define the parameters and randomization ranges to focus on
specific aspects of the system’s performance.

e Scalability. Automatic domain randomization can readily scale to create complex
scenarios for sophisticated autonomous systems.

e Reproducibility. The process can be easily replicated, ensuring consistency and
facilitating regression testing.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of automatic domain randomization for the T&E of
autonomous systems include the following:

e Primary outcome:

o Enhanced T&E robustness. By exposing the system to diverse and challenging
scenarios, including minor variations and randomized agent parameters, automatic
domain randomization increases T&E insight to evaluate the system’s ability to
perform reliably in unpredictable real-world environments.

e Additional benefits:
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Improved trustworthiness. Rigorous testing under varied conditions helps identify and
mitigate potential failures and assess system robustness, leading to more trustworthy
system deployment.

Accelerated development. Automatic domain randomization can speed up the testing
process, enabling faster iteration and refinement of autonomous systems.

Reduced costs. Automation reduces the need for manual scenario creation and
execution, leading to cost savings.

Improved performance. Exposure to diverse scenarios can lead to improved system
performance and generalization.

Facilitated data collection. Automatic domain randomization generates vast amounts
of data that are valuable for training and refining ML models within autonomous
systems.

Costs, Limitations, and Assumptions

The use of automatic domain randomization may have the following negative impacts:

Computational resources. Running complex simulations with varied parameters can
demand significant computational power.

Bias in randomization. Care must be taken to ensure that the randomization process
avoids unintended biases that may skew the test results.

Definition of realistic parameters. Setting appropriate ranges for randomization requires
domain expertise to ensure that scenarios remain relevant and representative of real-
world conditions.

Tools and Resources

For more information and tools that support automatic domain randomization and its benefits for

the DT&E of autonomous systems, see the technical paper, “Domain Randomization for
Transferring Deep Neural Networks from Simulation to the Real World” (Tobin et al. 2017).

Challenges Addressed by This Method

Automatic domain randomization helps to address several challenges for the T&E of

autonomous systems including:
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T&E as a Continuum. Automatic domain randomization supports continuous testing by
enabling iterative and automated scenario variation, ensuring that the system is regularly
exposed to diverse and evolving test conditions throughout its life cycle.

T&E of the OODA Loop. Automatic domain randomization assists in evaluating the
OODA loop by presenting the autonomous system with diverse and unexpected
situations, forcing it to adapt and respond effectively.

Safety. Automatic domain randomization helps to identify potential safety hazards and
ensure that the system behaves reliably in challenging scenarios that better reflect the
complexity and unpredictability of real-world environments, including edge cases.

Data. Automatic domain randomization generates vast amounts of data that can be used
to train, validate, and improve the performance of autonomous systems, especially those
relying on ML.

Black Box Components. By introducing minor variations and generalizing real-world
disturbances, automatic domain randomization helps prevent overfitting and improves the
system’s ability to generalize to new situations to evaluate the performance and
robustness of black box components within autonomous systems.

Test Adequacy and Coverage. Automatic domain randomization enhances test coverage
by automatically creating numerous and diverse scenarios, including those that may be
overlooked in traditional testing approaches.

Automated Outlier Search and Boundary Testing

Automated outlier search and boundary testing for models of autonomous systems refers to a

process to identify where model behavior is at or near the limits of its operating conditions or

exhibits changing performance. These conditions can be related to environmental factors, sensor

performance, decision-making capabilities, or other constraints that the system is designed to

handle. These regions are also important because they can identify critical areas for real-world

testing for validation.

Description of Automated Outlier Search and Boundary Testing

Automated outlier search and boundary testing encompasses the following areas:

Outlier detection refers to identifying data points that deviate significantly from the
expected behavior or patterns within a dataset. These outliers could represent errors,
anomalies, or situations that may require special attention.
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e Outlier detection tools typically employ statistical methods such as z-scores, standard
deviation thresholds, or percentile-based methods to identify values that lie far from the
mean or median.

e Boundary search tools focus on determining where the output of a model is rapidly
changing. This approach is particularly important for ensuring that the system does not
operate in unsafe conditions or locations.

e Statistical methods generally focus on detecting areas of high variability, gradients, or
local deviations in the output.
Details and Best Practices

Key features of automated outlier search and boundary testing for the T&E of autonomous
systems include the following:

e Effectively covers large test spaces to focus in on regions of interest.
e Determines focus areas for real-world testing.
e Helps evaluate the robustness of the model.

e (ives insight into how systems may react to edge cases.

Primary Outcome

The primary outcome of automated outlier search and boundary testing for the T&E of
autonomous systems is that testers can efficiently characterize the safe and effective regions of
autonomous system operation within the full operating environment.

Costs, Limitations, and Assumptions

The use of automated outlier search and boundary testing may have the following negative
impacts or trade-offs:

e Requires sufficiently representative models and simulations.

e Incurs additional costs for integrating models with statistical tools.

Tools and Resources

For more information and tools that support automated outlier search and boundary testing and
its benefits for the DT&E of autonomous systems, see:
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Range Adversarial Planning Tool described in the journal article, “Delivering Test and
Evaluation Tools for Autonomous Unmanned Vehicles to the Fleet” (Mullins et al. 2017).

JMP BEAST Mode: Boundary Exploration through Adaptive Sampling Techniques
(Wisnowski et al. 2020).

MARGInS: Model-based Analysis of Realizable Goals in Systems (Davies et al. 2014).

Challenges Addressed by This Method

Automated outlier search and boundary testing helps to address several challenges for the T&E

of autonomous systems including:

5.4.6

Safety. Automated outlier search and boundary testing helps identify potential areas of
unsafe operation.

Black Box Components. Even if the AI/ML is not fully understood, automated outlier
search and boundary testing can effectively explore the space.

Test Adequacy and Integration. Automated outlier search and boundary testing
efficiently covers large test spaces to look for areas of interest.

Failure Path Testing

Failure path testing is a testing technique focused on identifying and analyzing the potential

paths where a system may fail under specific conditions. Autonomous systems’ high dependence

on complex software creates a need for testing of the many potential ways that software faults,

bugs, or poor designs could cause unexpected system failures or deficiencies.

Description of Failure Path Testing

Failure path testing encompasses the following:

A “failure path” refers to a sequence of events or operations in a system that could lead to
an error or undesired outcome. These paths are often considered during negative testing,
where the system is intentionally subjected to invalid, unexpected, or boundary inputs to
see how it behaves.

This technique is particularly useful in identifying edge cases, vulnerabilities, or areas
where the system may not behave as expected when subjected to failure scenarios. The
primary goal is to test the system’s ability to handle errors or unexpected situations
gracefully, ensuring that it does not fail catastrophically and that appropriate error-
handling mechanisms are in place.
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Details and Best Practices

Key features of failure path testing for the T&E of autonomous systems include:

e Testing for failure conditions. The focus is on testing or simulating conditions that may

lead to failure by defining clear test scenarios to understand potential failure modes, such

as:

o

o

o

o

Invalid input or incorrect user actions such as fuzz testing.
Network failures or slow responses.

System crashes or resource limitations (e.g., memory, CPU).
Database connection failures.

Boundary condition violations (e.g., overflow or underflow).
Concurrent access or race conditions.

Security vulnerabilities.

e Error handling verification. A key concern during failure path testing is ensuring that

when failures occur, the system handles them in a controlled way. This approach includes

fuzz testing to evaluate:

o

o

o

o

Appropriate error messages.
Logging and reporting errors.
Recovery mechanisms (e.g., retries, fallback options).

Graceful degradation of system functionality.

e Automated failure path testing. This methodology involves test automation and

regression testing:

o

Test automation: Automate failure path tests wherever possible to ensure coverage for
negative scenarios across various conditions (e.g., invalid inputs, network failures).

Regression testing: Include negative test cases in the regression suite to verify that
failures are consistently handled after new code changes.

e Result monitoring and review. These processes include failure reporting and retrospective

reviews:

o

Failure reporting: Ensure that failures are well-documented, with clear information on
what caused each failure, and any steps needed to reproduce it.
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o Retrospective reviews: Regularly review failures that have been discovered during
testing to see if any patterns emerge and whether any systemic issues need to be
addressed.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of failure path testing for the T&E of autonomous
systems include the following:
e Primary outcome:

o Robustness and resilience: Verifies the software’s ability to recover from errors and
continue operating or fail in a predictable and safe manner.

e Additional benefits:

o Fault tolerance: Ensures that the system can tolerate common faults without
compromising user experience or system integrity.

o Security: Tests for vulnerabilities and ensures that the system does not expose
sensitive data or fail in a way that could compromise security.

o Usability: Ensures that users are presented with understandable error messages and
have clear guidance when things go wrong.

Costs, Limitations, and Assumptions

The use of failure path testing may have the following negative impacts or trade-offs:

e Complexity. Mapping out all possible failure paths can be challenging because of the
large number of scenarios that can lead to failure, especially in complex systems.

e Resource intensiveness. Simulating failure conditions may require special test
environments or configurations (e.g., simulated network failure or resource exhaustion).

e False positives/negatives. The testing may sometimes result in false alarms (where a
failure path is incorrectly identified) or miss potential failure points that do not
immediately manifest under test conditions.

Tools and Resources

For more information and tools that support failure path testing and its benefits for the DT&E of

autonomous systems, see the book, Software Engineering: A Practitioner’s Approach (Pressman
and Maxim 2020).
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Challenges Addressed by This Method

Failure path testing helps to address several challenges for the T&E of autonomous systems
including:

e Safety. Failure path testing helps identify potential areas of unsafe operation.

e Test Adequacy and Integration. With automation, failure path testing examines large
test spaces to look for areas of interest.

5.5 Test Execution

Test execution provides multiple challenges with autonomous systems but provides great
opportunity for learning as well as evaluation. This section discusses several practices related to
test execution for an autonomous system, which help to enable effective, efficient, and robust
T&E:

e Cognitive instrumentation.
e Runtime assurance.

e Test user interface.

These practices may not apply to every autonomy program, but where implemented, they help
enable successful T&E of autonomous systems with reduced costs and time.

5.5.1  Cognitive Instrumentation

An emerging solution for the evaluation of autonomous systems is cognitive instrumentation,
which focuses on understanding and assessing the cognitive processes of autonomous systems,
ensuring their reliable and predictable operation in real-world scenarios. By providing insights
into the “why” behind an autonomous system’s actions, cognitive instrumentation enables testers
to diagnose the root causes of performance deficiencies and ensure dependable operation.

Description of Cognitive Instrumentation

Cognitive instrumentation is a method to gain insight into the internal state and decision-making
processes of autonomous systems. Imagine being able to see inside the “mind” of an autonomous
system. Cognitive instrumentation makes this possible by monitoring and analyzing data related
to perception, reasoning, and planning, helping testers understand why a system behaves in a
particular way. This “internal workings” refers to the machine’s ability to perceive, reason,
decide, and team in its dynamic OODA loop.
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Details and Best Practices

Key features of cognitive instrumentation for the T&E of autonomous systems include:

¢ Embedded system instrumentation: Integrate specialized tools within the autonomous
system to capture real-time data during both testing and operation. This instrumentation
allows for the distinction between coding errors, inadequate algorithms, insufficient
training data, or even sensor/hardware problems.

e Data acquisition: Capture data from the autonomous system’s sensors, processors, and
algorithms. This data may involve logging sensor readings, internal representations of the
environment, and decision-making pathways.

e Visualization and analysis: Develop tools and techniques to visualize and analyze the
acquired data. These techniques could include creating graphical representations of the
system’s internal state, highlighting areas of uncertainty, and identifying potential biases
in decision-making.

e Experimentation and manipulation: Design specific test scenarios and manipulate
environmental factors to observe how the autonomous system responds. This approach
helps in evaluating the robustness and adaptability of the system’s cognitive processes.

Primary Outcomes and Additional Benefits

The primary outcome and additional benefits of cognitive instrumentation for the T&E of
autonomous systems include the following:

e Primary outcome:

o Performing autonomy evaluation: Gain a deeper understanding of the cognitive
processes within autonomous systems, enabling more effective evaluation of their
performance and safety. This evaluation includes diagnosing the causes of incorrect
behavior or inadequate performance by tracing issues back to their origin within the
system’s perception, reasoning, or decision-making processes.

o Characterizing reliability and trustworthiness: Identify and enable the mitigation of
potential vulnerabilities in the system’s decision-making.

e Additional benefits:

o Enabling early issue detection: Identify potential problems in the design and
development phase, reducing the risk of costly failures later in the life cycle.

o Supporting performance optimization: Fine-tune algorithms and improve the system’s
overall performance by analyzing cognitive data.
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o Enhancing human-machine collaboration: Foster better understanding between
humans and autonomous systems, facilitating smoother interaction and collaboration.

o Informing regulatory frameworks: Provide valuable data for developing safety
standards and regulations for autonomous systems.

Costs, Limitations, and Assumptions

The use of cognitive instrumentation may have the following negative impacts:

Increased complexity. Implementing cognitive instrumentation can add complexity to the
T&E process, requiring specialized tools and expertise.

Data overload. The volume of data generated may be overwhelming, necessitating
efficient data management and analysis techniques.

Insufficient explainability. Cognitive instrumentation may not be enough to provide
understandability of the system in some cases, especially for Al components, so
explainable artificial intelligence (XAI) tools or other evaluations may still be needed.

Design and implementation costs. Developing and integrating the internal system
framework required for cognitive instrumentation can incur significant costs, particularly
in terms of specialized engineering and software development.

Tools and Resources

Currently, resources are lacking for autonomous system cognitive instrumentation; however,

many of the same issues and terms are discussed for XAI methods. See the technical paper,

“Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges
toward Responsible AI” (Arrieta et al. 2019).

Challenges Addressed by This Method

Cognitive instrumentation helps to address several challenges for the T&E of autonomous

systems including:

T&E as a Continuum. Cognitive instrumentation enables continuous monitoring and
evaluation of cognitive processes throughout the system life cycle, improving
transparency and adaptability.

T&E of the OODA Loop. Cognitive instrumentation provides insights into each stage of
the OODA loop.
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e Personnel. Cognitive instrumentation supports operators and analysts by improving
system interpretability, reducing cognitive load, and informing the training requirements
for effective human-machine collaboration.

e Exploitable Vulnerabilities. Cognitive instrumentation identifies weaknesses in the
system’s cognitive processing that could be exploited, enabling proactive risk mitigation
strategies.

e Ethics. Cognitive instrumentation promotes the ethical development and deployment of
autonomous systems by increasing transparency and accountability.

e Data. Cognitive instrumentation provides valuable data for understanding the behavior of
autonomous systems and informing the development of more robust and reliable Al
algorithms.

e HAT. Cognitive instrumentation enhances trust and collaboration by making the
system’s reasoning and intent more understandable to human operators.

¢ Black Box Components. Cognitive instrumentation mitigates the black box problem by
providing visibility into the internal workings of Al algorithms and their decision-making
processes.

e Mission Evolution. Cognitive instrumentation ensures that the system’s decision-making
processes remain effective as mission requirements and operational environments evolve.

¢ Dynamic Learning. Cognitive instrumentation facilitates the evaluation of how
autonomous systems learn and adapt over time, ensuring their continuous improvement
and safe operation in dynamic environments.

5.5.2 Runtime Assurance

A prominent method for the T&E of autonomous systems is runtime assurance, which focuses on
monitoring and verifying system behavior during operation. Runtime assurance focuses on real-
time monitoring and intervention capabilities to ensure safe and reliable system behavior,
especially during complex and unpredictable testing scenarios.

Description of Runtime Assurance

Runtime assurance is a continuous process of monitoring an autonomous system’s performance,
detecting anomalies, and initiating appropriate responses to maintain safe and effective
operation. It acts as a deterministic “wrapper” around the autonomy under test, with the authority
to intervene and guide the system to a fail-safe condition if necessary. Runtime assurance allows
for the safe exploration of complex autonomous behaviors without the risk of catastrophic
failures.
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e Real-time system health verification. Runtime assurance focuses on evaluating the
system’s internal state and external performance during operation to ensure that it
functions within defined parameters and safety limits.

e Dynamic adaptation. Runtime assurance allows for adjustments to the system’s behavior
based on real-time feedback and changing environmental conditions.

e Automated safety and security. Runtime assurance leverages monitoring and feedback
tools to manage risk, allowing for graceful degradation of system capabilities in response
to anomalies and automating safety and security reporting.

Details and Best Practices

Key features of runtime assurance for the T&E of autonomous systems include:

e Continuous monitoring: Employing sensors, data logging, and analysis techniques to
track key performance indicators (KPIs) and system health metrics in real time. This
approach includes monitoring both the software and hardware components.

e Anomaly detection: Implementing algorithms and mechanisms to identify deviations
from expected behavior, potential failures, or unsafe conditions. This approach may
involve ML techniques for pattern recognition and predictive analysis.

e Response mechanisms: Developing and integrating procedures to mitigate or recover
from detected anomalies. Response mechanisms can range from simple alerts to complex
autonomous recovery maneuvers or safe shutdown procedures.

e Data recording and analysis: Providing comprehensive data logging of system
performance, events, and anomalies for post-mission analysis, fault diagnosis, and future
system improvement.

e Safe recovery: Providing a reliable backup mechanism for the safe recovery of the test
vehicle if unanticipated problems occur, allowing for quick takeovers for restarts and
continued testing.

e Algorithm agnosticism: Enabling the test of any algorithm that meets its interface
requirements, regardless of complexity, allowing for flexibility in evaluating different
autonomous behaviors.

e Failure detection and recovery: Reliably detecting problems (hardware, software, or
environmental) and switching to a recovery/safe mode in the event of a failure.
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Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of runtime assurance for the T&E of autonomous
systems include the following:

e Primary outcomes:

o Enhanced system safety. By continuously monitoring system health and
implementing response mechanisms, runtime assurance aims to minimize the risk of
accidents or unintended consequences during autonomous operation, especially
during testing.

o Increased system reliability. Through real-time anomaly detection and mitigation,
runtime assurance helps to ensure the consistent and dependable performance of
autonomous systems in various operational scenarios.

e Additional benefits:

o Improved performance optimization. Real-time data analysis can be used to fine-tune
system parameters and optimize performance for specific tasks or environments.

o Accelerated testing cycles. Continuous monitoring and automated anomaly detection
can expedite the identification of system weaknesses, leading to faster iterative testing
and development cycles.

o Increased user confidence. Demonstrating robust runtime assurance capabilities can
build trust in the safety and reliability of autonomous systems, facilitating their wider
adoption.

o Increased test safety. Runtime assurance allows more aggressive exploratory testing
through increased test safety confidence.

o Reduced development costs. Early detection of anomalies during testing can prevent
costly failures and rework later in the development life cycle.

o Enhanced data-driven decision-making. The rich data collected through runtime
assurance provides valuable insights for system design improvements, operational
planning, and maintenance scheduling.

o Improved support for certification and accreditation. Runtime assurance data can be
used to demonstrate compliance with safety standards and regulations, aiding in the
certification and accreditation of autonomous systems.

o Enhanced test security. Runtime assurance adds another layer of defense against
adversarial actions by providing a counter to corrupted code, verifying commands,
and providing redundant control.
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Costs, Limitations, and Assumptions

The use of runtime assurance may have the following negative impacts:

e Increased system complexity. Implementing comprehensive monitoring and response
mechanisms can add complexity to the system design and software development.

e Computational overhead. Using real-time data processing and analysis may require
significant computational resources, potentially impacting system performance.

e Challenges in defining safety boundaries. Determining and characterizing the
multidimensional safety boundary and interrogating it in real time is a significant
challenge.

¢ Runtime overhead. Observing an executing system typically incurs some runtime
overhead. It is important to minimize this overhead, particularly when monitors are
deployed with the system.

e Additional V&V requirements. Implementing runtime assurance introduces additional
V&V requirements for the autonomy program.

Tools and Resources

For more information and tools that support runtime assurance and its benefits for the DT&E of
autonomous systems, see:

e Safe Testing of Autonomy in Complex, Interactive Environments described in the
technical paper, “Safe Testing of Autonomous Systems Performance” (Scheidt et al.
2015).

e R2U2: Tool Overview (Rozier and Schumann 2017).

Challenges Addressed by This Method

Runtime assurance helps to address several challenges for the T&E of autonomous systems
including:

e T&E as a Continuum. Runtime assurance supports the concept of dTEaaC, allowing for
consistent monitoring and evaluation of system performance throughout development and
even during deployment.

e Infrastructure. Reusable runtime assurance systems can streamline testing infrastructure
needs across multiple programs.
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Personnel. Runtime assurance automates aspects of testing, potentially reducing the need
for large testing teams and specialized expertise.

Exploitable Vulnerabilities. Runtime assurance helps mitigate potential vulnerabilities
in the system by providing backup and fail-safe control, improving security.

Safety. Runtime assurance is crucial for ensuring the safety of autonomous systems,
especially during testing when unexpected behaviors may emerge.

Ethics. Runtime assurance ensures the ethical deployment of autonomous systems by
enforcing predefined safety constraints and preventing unintended harmful actions.

HAT. Effective runtime assurance can increase human confidence and trust that the
system will not engage in unsafe or dangerous behavior.

Black Box Components. Even with complex black box components within the
autonomous system, runtime assurance can monitor overall system behavior and identify
anomalies.

Mission Evolution. Runtime assurance supports the adaptation of autonomous systems
to new mission parameters by ensuring continuous compliance with safety and
operational constraints.

Dynamic Learning. Runtime assurance provides the ability to detect and respond to
anomalies in dynamically learning systems.

Test Adequacy and Coverage. Runtime assurance expands the testing scope by enabling
the safe exploration of edge cases, ensuring broader test coverage without increased risk.

Autonomy Integration and Interoperability. Runtime assurance facilitates integration
with other autonomous and human-operated systems by ensuring consistent safety
enforcement across multiple platforms.

Test User Interface

Among the many humans interacting with autonomous systems, test personnel can sometimes be

overlooked. Test user interfaces are important for the T&E of autonomous systems, allowing for

the controlled T&E of the system’s performance and trustworthiness under various conditions

and mission scenarios.

Description of Test User Interface

The test user interface:
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e Provides testers with tools to interact with, manipulate, and evaluate the autonomous
system in a safe and repeatable environment.

e Allows for the injection of various scenarios, environmental conditions, and system
disturbances to assess the system’s robustness and ability to handle unexpected situations.

e Enables the collection of valuable data on system performance, human-machine
interactions, and even operator workload for tasks involving human partners.

Details and Best Practices

Key features of test user interfaces for the T&E of autonomous systems include:

e Scenario generation. The test user interface should allow testers to create and execute
various operational scenarios, including normal operations, unexpected events, and
emergency situations, to enable assessment of the autonomous system’s performance
under diverse conditions.

e System manipulation. The test user interface should enable testers to manipulate the
autonomous system’s state, inputs, and outputs, by adjusting sensor readings, injecting
software faults, or overriding control algorithms to test the system’s resilience and safety
mechanisms.

e Data acquisition and analysis. The test user interface should be equipped with robust data
logging capabilities to capture relevant information during testing, including cognitive
instrumentation data, to support performance analysis, identify areas for improvement,
and validate system requirements.

e Operator controls. The test user interface should provide appropriate controls and
displays for human operators to interact with the autonomous system, including setting
mission parameters, monitoring system status, and assuming manual control when
necessary.

e Real-time feedback. The test user interface should provide real-time feedback to testers
and operators on the system’s performance, behavior, and responses to various stimuli,
which is crucial for understanding the system’s capabilities and limitations.

e Safety and security features. The test user interface should incorporate safety and security
features to protect the test team and equipment, which could include emergency stop
buttons, system interlocks, and secure access controls.

¢ Insightful data visualization. The test user interface should present data in a clear and
concise manner, allowing testers to gain insights into the autonomous system’s
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characteristics and behavior, which could involve using graphs, charts, and other
visualizations to highlight KPIs and trends.

Primary Outcomes and Additional Benefits

The primary outcomes and additional benefits of test user interfaces for the T&E of autonomous
systems include the following:

e Primary outcomes:

o Enhanced test value and safety. By enabling rigorous testing under various
conditions, the test user interface helps identify potential issues and vulnerabilities
early in the development cycle, leading to more reliable and safer autonomous
systems.

o Improved HAT. The test user interface facilitates the evaluation of human-autonomy
interactions, leading to better understanding of operator workload, situational
awareness, and trust in the autonomous system, which could also inform the design of
more effective human-machine interfaces for optimal collaboration.

e Additional benefits:

o Reduced development costs. Early identification of issues through the test user
interface can reduce costly rework and redesign later in the development process.

o Accelerated testing cycles. The test user interface enables efficient and repeatable
testing, facilitating faster iteration and evaluation of system updates and
modifications.

o Better understanding of system behavior. The test user interface provides valuable
insights into the autonomous system’s decision-making processes, responses to
stimuli, and overall behavior.

o Improved training effectiveness. The test user interface can be used for operator
training, allowing operators to familiarize themselves with the system’s capabilities
and limitations in a safe and controlled environment.

Costs, Limitations, and Assumptions
The use of test user interfaces may have the following negative impacts:

e Development cost. Designing and implementing a comprehensive test user interface can
be expensive, requiring specialized expertise and resources.
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e Complexity. The test user interface can be complex to develop and maintain, especially
for highly sophisticated autonomous systems.

e Limited realism. Test injects may not be able to fully capture the complexities and
uncertainties of real-world environments.

Tools and Resources

For more information and tools that support the test user interface and its benefits for the DT&E
of autonomous systems, see:

e 10 Usability Heuristics for User Interface Design (Nielsen 2024).

e System Usability Scale on the Test Science Measuring Usability Website
(https://testscience.org/measuring-usability/).

Challenges Addressed by This Method

Test user interfaces help to address several challenges for the T&E of autonomous systems
including:

e T&E of the OODA Loop. Test user interfaces enable testers to evaluate the performance
of the OODA loop within the autonomous system.

e Data. Test user interfaces facilitate the collection and analysis of data from autonomous
system testing, enabling the identification of performance issues, trends, and areas for
improvement.

e HAT. Test user interfaces facilitate an effective interface for test team personnel and
improved insight into the collaboration between humans and autonomous systems.

e Autonomy Integration and Interoperability. Test user interfaces support the evaluation
of autonomous system interoperability with other platforms by allowing test teams to
simulate interactions, mission parameters, and cross-system communication.

5.6 Data Analysis and Evaluation

Data analysis and evaluation of autonomous systems is critical to iteratively improve and expand
testing and provide valuable insights to achieve justified evidence of trustworthiness and inform
data-driven decisions. This section discusses several practices related to an autonomous system’s
test data analysis and evaluation, which help to enable the effective, efficient, and robust T&E of
autonomous systems as well as certification and accreditation:

¢ Human performance standards.
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e Operational and mission-based testing.
e Task-based certification.

¢ (Quantified risks and autonomy performance growth curves.

These practices may not apply to every autonomy program, but where implemented, they help
enable successful T&E of autonomous systems with reduced costs and time.

5.6.1 Human Performance Standards

Human (operator) performance standards involve applying specific measures of performance,
suitability, and effectiveness based on established training and proficiency standards. These
standards ensure that autonomous systems can achieve mission effectiveness by meeting or
exceeding human performance baselines, enabling reliable interaction with human operators.

Description of Human Performance Standards

Human performance standards encompass the following areas:
e Proficiency standards set clear benchmarks for human performance, providing a baseline
for evaluating autonomous system capabilities in similar mission scenarios.

e Task performance metrics measure human effectiveness across key tasks, guiding the
development of autonomous systems that can reliably perform these tasks.

e Suitability measures assess human ability to complete tasks within operational contexts,
helping to define the level of reliability and effectiveness required from autonomous
systems.

Details and Best Practices

Key features of human performance standards for the T&E of autonomous systems include:
e Established human performance standards to set baselines for autonomous system
capabilities, ensuring these systems meet mission effectiveness requirements.

e Continuous proficiency assessments to monitor operator skills and adapt autonomous
system development and testing as mission needs evolve.

e Task-specific performance metrics to define KPIs based on human proficiency, helping
autonomous systems achieve comparable or superior effectiveness in mission scenarios.

e Scenario-based training integration to align operator standards with real-world mission
conditions, enhancing readiness and system reliability.
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Primary Outcome and Additional Benefits

The primary outcome and additional benefits of human performance standards for the T&E of
autonomous systems include the following:
e Primary outcome:

o Enhanced T&E insights into autonomous system perception, decision-making,
learning, teaming, and control capabilities, benchmarked against proven, measurable
standards of human operator performance.

e Additional benefits:

o Improved alignment of human capabilities with system requirements, ensuring
optimal operator—system interaction.

o Enhanced design and development processes by using human performance as a
reference, ensuring that autonomous systems meet mission-critical task needs.

o Early identification of gaps in autonomous system functionality, allowing for system
adjustments or training modifications.

o Increased system reliability by benchmarking key operator tasks.

Costs, Limitations, and Assumptions

The use of human performance standards may have the following negative impacts or trade-offs:
e Assumption that existing human operator standards exist and are relevant and applicable
to autonomous system interactions, which may not always be the case.

¢ Limitation that some subjective or nonquantitative performance standards require expert
interpretation, potentially impacting consistency and objectivity in evaluations.

e Potential difficulty in adapting human performance metrics to novel or rapidly evolving
autonomous system capabilities.

Tools and Resources

Future updates to this guidebook will include tools for human performance standards, which are
currently in development.

Challenges Addressed by This Method

Human performance standards help to address several challenges for the T&E of autonomous
systems including:
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e T&E of the OODA Loop. Human performance standards support the evaluation of how
human operators interact with autonomous systems in the OODA cycle.

¢ Requirements. Human performance standards ensure the alignment of human
performance standards with system requirements to meet mission-specific goals.

e Personnel. Human performance standards establish performance benchmarks based on
human task execution, helping to define the capabilities that autonomous systems must
meet or exceed.

e Safety. Human performance standards establish clear performance benchmarks for safe
human-system interactions, reducing operational risk.

e Data. Human performance standards provide consistent performance benchmarks
derived from human task execution, enabling the evaluation of autonomous system
capabilities against proven standards.

e HAT. Human performance standards establish measures for evaluating and improving
collaboration, role allocation, and interaction between humans and autonomous systems.

e Mission Evolution. Human performance standards support mission success by
confirming operator readiness to manage autonomous systems in evolving mission
contexts.

e Autonomy Integration and Interoperability. Human performance standards establish
human performance benchmarks to guide autonomous system design, ensuring smooth
integration.

5.6.2 Task-Based Certification

A method gaining prominence in the T&E of autonomous systems is task-based certification. It
offers a structured approach to evaluating system capabilities against specific tasks, ensuring
operational effectiveness and safety. It allows for incremental certification as the system matures,
mirroring the graded certifications common in human training.

Description of Task-Based Certification

Task-based certification:

e s a capability-focused assessment method that shifts the focus from traditional pass/fail
verification of individual requirements to evaluating the system’s ability to perform
mission-essential tasks in its intended operational environment, acknowledging the
complex and adaptive nature of autonomous systems.
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Is an iterative certification process, similar to how human operators gain certifications
incrementally as they progress through training, supporting the certification of
autonomous systems for limited operations with specific tasks, with the expectation of
expanded capabilities over time.

Details and Best Practices

Key features of task-based certification for the T&E of autonomous systems include:

Scenario-based testing: Create realistic scenarios that represent the operational tasks the
autonomous system will face, testing or simulating various environments, threats, and
unexpected events.

Task decomposition: Break down complex tasks into smaller, manageable subtasks to
facilitate focused evaluation and identify specific areas for improvement, reducing risks
for complex mission tasks.

Metrics-driven assessment: Define clear, measurable metrics to evaluate task completion,
such as accuracy, efficiency, time to completion, and safety.

Iterative evaluation: Conduct testing in an iterative manner, allowing for adjustments to
the system and scenarios based on the results of previous evaluations, supporting
continuous learning and improvement.

Evolving standards: Allow certification standards to evolve alongside advancements in
autonomy capabilities and test methodologies.

Primary Outcome and Additional Benefits

The primary outcome and additional benefits of task-based certification for the T&E of

autonomous systems include the following:

Primary outcome:

o Establishes certification standards tailored to appropriately match autonomous system
performance and trustworthiness for specific missions and tasks, allowing for
incremental fielding of capabilities as the system matures.

Additional benefits:

o Improves system design. This approach reveals design flaws and areas for
improvement early in the development process by focusing on task performance.

o Reduces development costs. Smaller, task-based capabilities can lead to faster
development cycles and lower overall costs.
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o Enhances human teaming. The demonstration of system competence through task-
based evaluation can increase user coordination and acceptance.

o Streamlines acquisition. This method provides a clear framework for evaluating
proposals and selecting the most suitable autonomy capabilities for specific missions.

o Addresses ethical considerations. This method helps assess the ethical implications of
autonomous systems by evaluating their behavior in challenging scenarios and
withholding certifications for those tasks with insufficient proven trustworthiness.

o Responds to evolving needs. The addition or adjustment of task-based performance
supports evolving threats, tactics, and technologies.

Costs, Limitations, and Assumptions

The use of task-based certification may have the following negative impacts:

e Complexity. Developing realistic scenarios and defining appropriate metrics can be
complex and time-consuming.

e Resource intensiveness. Implementing this method may require significant resources,
including simulation tools, test environments, and subject matter expertise.

e Subjectivity. Evaluating task performance can involve some level of subjectivity,
particularly for tasks that require complex decision-making.

e Continuous improvement. Task-based certification assumes that the autonomous system
will improve and expand capabilities over time, which may not be necessary for some
applications.

Tools and Resources

For more information and tools that support task-based certification and its benefits for the
DT&E of autonomous systems, see the task-oriented requirements engineering (TORE)
framework in the technical paper, “TORE: A Framework for Systematic Requirements
Development in Information Systems” (Adam et al. 2014).

Challenges Addressed by This Method

Task-based certification helps to address several challenges for the T&E of autonomous systems
including:
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e T&E as a Continuum. Task-based certification supports the concept of T&E as a
continuous process integrated throughout the system life cycle, from design and
development to deployment and sustainment.

¢ Requirements. Task-based certification focuses not on verifying individual requirements
but rather on assessing the system’s ability to perform mission-essential tasks, ensuring
that requirements are relevant and contribute to overall operational effectiveness.

e Personnel. Task-based certification enables test personnel to evaluate autonomous
systems in a manner similar to human operator qualification, aligning with familiar
training and certification models.

o Safety. Task-based certification helps to identify potential safety risks and ensure that the
system performs tasks safely within its intended operating environment.

e Ethics. Task-based certification enables ethical use by evaluating behaviors in
challenging task scenarios and withholding certifications for those tasks with insufficient
proven trustworthiness.

e HAT. Task-based certification helps to evaluate the effectiveness of human-autonomous
system collaboration by assessing joint task performance to test and evaluate task
integration and cooperation and calibrate trust more appropriately to specific tasks.

5.6.3 Operational and Mission-Based Testing

Operational and mission-based testing focuses on evaluating autonomous systems within realistic
mission scenarios, integrating them with other manned and unmanned assets to assess resilience
against full-spectrum threats and their collective impact on mission success.

Description of Operational and Mission-Based Testing

Operational and mission-based testing focuses on evaluating autonomous systems in realistic
mission settings alongside manned and unmanned assets. This method assesses the system’s
effectiveness, adaptability, and resilience under collective full-spectrum threats and encompasses
the following:

e Integrated mission scenarios to test system performance in coordinated operations with
other assets, ensuring interoperability and mission cohesion.

e Threat environment evaluation by simulating full-spectrum threats to analyze the
system’s response and impact on mission success.

e Operational/mission alignment to ensure that autonomous system capabilities meet the
demands of dynamic, real-world mission conditions.
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Details and Best Practices

Key features of operational and mission-based testing for the T&E of autonomous systems
include the following:

e Mission CONOPS and desirable tactics are defined early in development and
incorporated into the design and realization of the autonomous system.

e Scenario-based testing replicates realistic mission conditions, integrating the autonomous
system with other assets to assess its interoperability and adaptability.

e Full-spectrum threat assessments are used to test the system’s resilience against a range
of adversarial conditions, assessing not only individual threats but also the combined
effects and interactions among them, providing insights into system reliability and
mission readiness.

Primary Outcomes and Additional Benefits

The primary outcome and additional benefits of operational and mission-based testing for the
T&E of autonomous systems include the following:
e Primary outcome:

o Final evaluation to confirm the autonomous system’s effectiveness and suitability in
an integrated, SoS mission test scenario.

o Verification of mission readiness by ensuring that the system can operate reliably
under realistic conditions alongside both manned and other unmanned assets.

e Additional benefits:
o Increased confidence in system performance across varied operational environments.
o Identification of improvements for system interoperability with other assets.

o Enhanced mission planning capabilities by understanding system behavior in full-
spectrum threat scenarios.

o Support for iterative design improvements through feedback from mission-based
testing.

o Reduced risk of mission failure by identifying and addressing potential vulnerabilities
early.

o Validation of TTPs under realistic conditions to support operational readiness.
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Costs, Limitations, and Assumptions

The use of operational and mission-based testing may have the following negative impacts or
trade-offs:

e Cost of infrastructure and personnel to plan and execute realistic SoS tests.

e Organizational and planning difficulty with establishing early CONOPS, especially for a
technology that is developing rapidly.

e Potential for incomplete threat representation, as some adversarial conditions may be
challenging to fully simulate.

e Increased time requirements for coordinating and executing complex, integrated mission
scenarios.

Tools and Resources

For more information and tools that support operational and mission-based testing and its
benefits for the DT&E of autonomous systems, see the Air Force Test Center Orange Flag
Website (https://www.aftc.af.mil/Test-Flag-Enterprise/Orange-Flag/).

Challenges Addressed by This Method

Operational and mission-based testing helps to address several challenges for the T&E of
autonomous systems including:

o Exploitable Vulnerabilities. Operational and mission-based testing identifies
weaknesses in system performance under realistic mission conditions, reducing the
likelihood of adversary exploitation.

e Safety. Operational and mission-based testing identifies safety risks in operational
contexts, especially in scenarios involving both manned and unmanned assets.

e HAT. Operational and mission-based testing evaluates human-autonomy collaboration
under realistic operational conditions to improve team cohesion and trust.

o Test Adequacy and Coverage. Operational and mission-based testing provides thorough
testing across mission scenarios to ensure reliable performance across operational
contexts.

e Autonomy Integration and Interoperability. Operational and mission-based testing
verifies seamless integration and cooperative performance with other autonomous and
human-operated assets.
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5.6.4 Quantified Risks and Autonomy Performance Growth Curves

This method quantifies various types of risks for an autonomous system by using statistical
techniques such as reliability growth curves. By measuring relevant metrics over time, testers
can use statistics to measure improvement and to make justified predictions of future capabilities.

Description of Quantified Risks and Autonomy Performance Growth Curves

Quantified risks and autonomy performance growth curves:

e Determine relevant metrics of interest:
o Major failures.
o Minor failures.
o Loss of control.
o Incorrect decisions.
e Measure and plot metrics over time similar to reliability growth curves.

e Use appropriate statistical techniques to evaluate trends over time and predict future
performance:

o Can be used to estimate when a system will reach a suitable level of performance.

o Can support key program decisions.

Details and Best Practices

Key features of quantified risks and autonomy performance growth curves for the T&E of
autonomous systems include:

e C(learly defining goals early.

e Using appropriate models for the data.
e Actively managing corrective actions.
e Ensuring that data quality is sufficient.

e Regularly communicating results to relevant stakeholders.

Primary Outcomes

The primary outcomes of quantified risks and autonomy performance growth curves for the T&E
of autonomous systems include:
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e Visually demonstrating and predicting performance over time.
e [Evaluating the maturity of the system toward a goal.

e Showing when a system is lagging and may need additional efforts to improve
performance.

Costs, Limitations, and Assumptions

The use of quantified risks and autonomy performance growth curves may have the following
negative impacts or trade-offs:

e Model selection. When using reliability growth curve fitting, it is important to avoid
choosing an inappropriate or unsuitable model for the data.

e Parameter estimation. Incorrectly or imprecisely estimating the parameters of the
reliability growth curve fitting model can lead to inaccurate or unreliable results.

e Assumption validation. When using reliability growth curve fitting, it is important to
avoid violating or ignoring the assumptions of the model or the method.

¢ Environment. Most models do not account for environmental changes.

e Complexity. Some simple models may not be appropriate for complex systems.

Tools and Resources

For more information about performance growth curves and their benefits for the DT&E of
autonomous systems, see:

e DAU Reliability Growth Website (https://www.dau.edu/acquipedia-article/reliability-
growth).
e Reliability Growth Guidance in the DOT&E TEMP Guidebook.

Challenges Addressed by This Method

Quantified risks and autonomy performance growth curves help to address several challenges for
the T&E of autonomous systems including;:

e T&E as a Continuum. This method captures the improvement over time of various
metrics and estimates future performance.

e Exploitable Vulnerabilities. This method identifies recurring failure modes or
degradation trends that may represent exploitable weaknesses in system design or
behavior.
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Safety. This method helps identify trends in failure modes over time, enabling early
detection of risk patterns before they become critical.

HAT. This method highlights trends in system behaviors that affect teaming
effectiveness, such as decision latency or coordination breakdowns.

Test Adequacy and Coverage. This method uses statistical techniques to evaluate
whether enough testing has been performed to support confidence in system maturity and
reliability.

Autonomy Integration and Interoperability. This method monitors how autonomous
components perform within a larger SoS context, assessing whether integrated
performance improves in line with expectations.

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
178



6. T&E Resources

6 Test and Evaluation Resources

This section will be published separately as an addendum to follow the basic guidebook.
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7 Conclusion

This guidebook has provided focused guidance and recommended practices for the early and
developmental T&E of autonomous systems for the purposes of DoD. This guidebook addressed
the novel challenges of removing human operators from DoD systems and empowering future
autonomous systems, especially those that are Al enabled, to independently act in contested
environments. These challenges demand iterative approaches to evaluating the growing
capabilities of autonomous systems to ensure trusted mission capability across complex
operational environments. The information provided in this guidebook includes:

e Definitions of key terminology in T&E, autonomy, and Al.
e Important U.S. Federal and DoD policies that relate to the T&E of autonomous systems.

e Background on recent and current technology and acquisition developments with major
impacts on the future vision for DoD T&E of autonomous systems.

e Overarching and specific challenges that autonomous systems pose for T&E.

e Methods and best practices for autonomous systems that may help reach solutions to
those T&E challenges, as well as provide additional benefits to other disciplines.

The guidance includes links and citations to references with more information about
methodologies and practices. In future iterations of this guidebook, additional references,
resources, tools, and examples will be provided to support the DoD autonomy T&E community.
Expansions and improvements are planned on a relatively frequent basis. The authors and
sponsors of this guidebook welcome inputs and recommendations from across the community.

In summary, this guidance leverages emerging best practices in agile and iterative testing to
extend success throughout the T&E continuum. By applying these best practices to achieve
efficient, effective, and robust DT&E, autonomous DoD systems will be primed for successful
operational T&E and operational employment.
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To create meaningful contrasts and standardize concepts, a lexicon must be established.
Achieving a common understanding among all English speakers is rare, and it presents an even
greater challenge with emergent technologies. Nevertheless, to enable education, learning, and
collaboration among DoD T&E, autonomy, and Al organizations, the following lexicon serves as
a common reference. Authoritative references within DoD, the U.S. government, and industry
were consulted in that order of precedence. These definitions should be considered “in use”
definitions for relevant organizations within the autonomy T&E community, rather than
immutable facts.

accuracy. When referring to ML, the number of correct classification predictions divided by the
total number of predictions. A measure for indicating the overall correctness of a classification
model’s predictions. (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)

algorithm. A method or set of rules or instructions to be followed in calculations or other
problem-solving operations, particularly by a computer. (Al Principles: Recommendations on the
Ethical Use of Al by DoD)

algorithmic bias. Systematic bias in an Al system’s outputs. Can be due to biased input or
training data, a statistically biased estimator in the algorithm, off-label use, incorrect
assumptions, or misinterpretation. (Al Principles: Recommendations on the Ethical Use of Al by
DoD)

anomaly detection. The identification of rare occurrences, items, or events of concern due to
their differing characteristics from majority of the processed data. (DeepAl Glossary:
https://deepai.org/machine-learning-glossary-and-terms/anomaly-detection)

artificial intelligence (AI). The ability of machines to perform tasks that normally require
human intelligence—for example, recognizing patterns, learning from experience, drawing
conclusions, making predictions, or taking action—whether digitally or as the smart software
behind autonomous physical systems. (Summary of the 2018 DoD Al Strategy)

autonomous weapon system. A weapon system that, once activated, can select and engage
targets without further intervention by an operator. This includes, but is not limited to, operator-
supervised autonomous weapon systems that are designed to allow operators to override
operation of the weapon system, but can select and engage targets without further operator input
after activation. (DoDD 3000.09)
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autonomy. The ability of a system to achieve goals while operating independently of external
control. Requires self-directedness (to achieve goals) and self-sufficiency (to operate
independently). (Fong 2018)

Bayesian learning. The classifiers assume that the probability of the presence or absence of the
state of a feature is modified by the states of other features. (Dukart and Hoffmann-La Roche
2015)

black box testing. Testing based on an analysis of the specification of the component or system.
(International Software Testing Qualifications Board (ISTQB) Glossary:
https://glossary.istgb.org/en/search/)

computer vision. The field of study surrounding how computers see and understand digital
images and videos. Computer vision spans all tasks performed by biological vision systems,
including “seeing” or sensing a visual stimulus, understanding what is being seen, and extracting
complex information into a form that can be used in other processes. (22 Technologies Computer
Vision Website: https://22-tech.com/computer-vision/)

cyber-physical systems (CPS). A special case of a cyber-system that interacts with its physical
surroundings. A cyber-system that controls and responds to physical entities through actuators
and sensors. (Refsdal et al. 2015)

deciding. Selecting a course of action or choosing how to implement an intended course of
action. (DAU CLE 002: “Introduction to the Test & Evaluation (T&E) of Autonomous
Systems”)

decision tree. When referring to ML, a non-parametric supervised learning algorithm, which is
utilized for both classification and regression tasks. It has a hierarchical, tree structure, which
consists of a root node, branches, internal nodes and leaf nodes. (IBM Website:
https://www.ibm.com/think/topics/decision-trees)

deep learning. Multiple layers of neural networks stacked “deep.” (Al Principles:
Recommendations on the Ethical Use of Al by DoD)

emergent behavior. Coherent patterns of high-level system behavior that would be difficult, if
not impossible, to predict from an understanding of the lower-level component behaviors. (DAU
CLE 002: “Introduction to the Test & Evaluation (T&E) of Autonomous Systems”)

explainable artificial intelligence (XAI). A key term in Al design and in the tech community as
a whole. It refers to efforts to make sure that Al programs are transparent in their purposes and
how they work. XAl is a common goal and objective for engineers and others trying to move
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forward with Al progress. (Al: A Glossary of Terms:
https://link.springer.com/content/pdf/bbm%3A978-3-319-94878-2%2F1.pdf)

feature. When referring to ML, an input variable used in making predictions. (Google Machine
Learning Glossary: https://developers.google.com/machine-learning/glossary)

formal methods. Mathematical techniques for specification, development, and verification of
hardware and software systems. Formal methods typically rely on formal logic, discrete
mathematics, or structured specification languages, and can be employed for modeling
requirements or for analyzing and mathematically proving specified features of a system.

generative adversarial network. A system to create new data in which a generator creates data
and a discriminator determines whether that created data is valid or invalid. (Google Machine
Learning Glossary: https://developers.google.com/machine-learning/glossary)

gradient descent. A mathematical technique to minimize loss. Gradient descent iteratively
adjusts weights and biases, gradually finding the best combination to minimize loss. (Google
Machine Learning Glossary: https://developers.google.com/machine-learning/glossary)

human factors. The application of science and data to understand how human capabilities and
limitations interact with other elements of a system.

human in the loop (HITL). A system architecture in which active human judgment and
engagement are part of the operation of a system, and a human is an integral part of the system
behavior. An example is the human operator of a remotely piloted vehicle or a decision support
system that makes recommendations for a human to decide on.

human on the loop (HOTL). A system architecture in which a human has a supervisory role in
the operation of the system but is not an integral part of the system behavior. An example is an
operator monitoring a fleet of warehouse robots—they operate autonomously but can be shut
down if the operator determines that something is wrong.

human out of the loop (HOOTL). A system architecture in which systems are fully automated
and do not require any human input or oversight.

inference. When referring to ML, the process of making predictions by applying a trained model
to unlabeled examples. In statistics, inference refers to the process of fitting the parameters of a
distribution conditioned on some observed data. (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)
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label. When referring to ML, specifically supervised learning, the “answer” or “result” portion of
an example. Each example in a labeled dataset consists of one or more features and a label.
(Google Machine Learning Glossary: https://developers.google.com/machine-learning/glossary)

live, virtual, and constructive (LVC). A taxonomy to broadly classify M&S. (1) Live
Simulations, which represent the natural physical environment in which individuals or teams
operate their systems and platforms for test or training purposes. (2) Virtual Simulations, which
are synthetic environments that include the replication of warfighting equipment and operational
environmental conditions; allows for the sharing of a common environment which multiple users
can access; and supports interactions with simulated entities (including objects, avatars, and
equipment) that mirror, in response fidelity, those that would occur in the real world.

(3) Constructive Simulations which are entirely simulated forces. Typically, real human inputs
are needed to fully operate these simulated forces which then carry out the resultant actions in a
synthetic environment. (Mills 2014)

machine learning (ML). The capability of machines to learn from data without being explicitly
programmed. (Al Principles: Recommendations on the Ethical Use of Al by DoD)

metrics. Used to measure the quality of the statistical or ML model. (DeepAl Glossary:
https://deepai.org/definitions)

model. When referring to ML, the set of parameters and structure needed for a system to make
predictions. (Google Machine Learning Glossary: https://developers.google.com/machine-
learning/glossary)

natural language processing (NLP). The use of algorithms to determine properties of natural,
human language so that computers can understand what humans have written or said. NLP
includes teaching computer systems how to extract data from bodies of written text, translate
from one language to another, and recognize printed or handwritten words. (DeepAl Glossary:
https://deepai.org/definitions)

neural network or artificial neural network. A computing system made up of a number of
simple, highly interconnected processing elements, which process information by their dynamic
state response to external inputs. Typically organized in layers of interconnected “nodes” where
data inputs are observed in the input layer, then communicated to and processed in one or more
hidden layers, to finally link to an output layer. (Al Principles: Recommendations on the Ethical
Use of Al by DoD)

offline learning. ML systems that have learned their approximate target functions or policies
after initial training phase and no longer learn or are “frozen.” (Al Principles: Recommendations
on the Ethical Use of Al by DoD)
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online learning. ML systems that learn and continue to learn on dynamic inputs in real time. (Al
Principles: Recommendations on the Ethical Use of Al by DoD)

overfitting. Creating a model that matches the training data so closely that the model fails to
make correct predictions on new data. (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)

pattern recognition. A technique to classify input data into classes or objects by recognizing
patterns or feature similarities. (DeepAl Glossary: https://deepai.org/definitions)

perception. A blanket term for an autonomous system’s ability to gather information about itself
and its environment. The autonomous system receives raw information from its onboard sensors
through communications with other systems and humans. (DAU CLE 002: “Introduction to the
Test & Evaluation (T&E) of Autonomous Systems™)

precision. When referring to ML, a metric for classification models that answers the following
question: When the model predicted the positive class, what percentage of the predictions were
correct? (Google Machine Learning Glossary: https://developers.google.com/machine-
learning/glossary)

predictive analytics. A branch of advanced analytics that makes predictions about future
outcomes using historical data combined with statistical modeling, data mining techniques, and
ML. (IBM Predictive Analytics Website: https://www.ibm.com/analytics/predictive-analytics)

reasoning. The mechanism of using available information to generate predictions, make
inferences and draw conclusions. (IBM Website: https://www.ibm.com/think/topics/ai-
reasoning)

recall. When referring to ML, A metric for classification models that answers the following
question: When ground truth was the positive class, what percentage of predictions did the model
correctly identify as the positive class? (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)

receiver operating characteristic curve. A curve of true positive rate versus false positive rate
at different classification thresholds. (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)

regression testing. Statistical software testing to rerun functional and nonfunctional tests to
ensure that previously developed and tested software still performs after a change. (Al
Principles: Recommendations on the Ethical Use of Al by DoD)

DT&E oF AUTONOMOUS SYSTEMS GUIDEBOOK
185


https://developers.google.com/machine-learning/glossary
https://deepai.org/definitions
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary
https://www.ibm.com/analytics/predictive-analytics
https://www.ibm.com/think/topics/ai-reasoning
https://www.ibm.com/think/topics/ai-reasoning
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary

Glossary

reinforcement learning. ML system where software agents learn to take actions in an
environment through the requirement to maximize some notion of cumulative reward (often
discounted for future rewards) through episodic training. (Al Principles: Recommendations on
the Ethical Use of Al by DoD)

robot. A powered machine capable of executing a set of actions by direct human control,
computer control, or a combination of both. At a minimum, it is comprised of a platform,
software, and a power source. (Joint Concept for Robotic and Autonomous Systems)

runtime monitoring. A lightweight and dynamic verification technique that involves observing
the internal operations of a software system and/or its interactions with other external entities,
with the aim of determining whether the system satisfies or violates a correctness specification.
(Cassar et al. 2017)

supervised learning. ML that learns a function that maps inputs to outputs based on known
input-output pairs from labeled data in a training sample. (Al Principles: Recommendations on
the Ethical Use of Al by DoD)

swarm intelligence. An Al approach which is inspired by natural behavior to solve optimization
problems. (Raslan et al. 2020)

test and evaluation (T&E). The process by which a system or components are compared
against requirements and specifications through testing. The results are evaluated to assess
progress of design, performance, supportability, etc. (DAU Website:
https://www.dau.edu/cop/pm/resources/test-and-evaluation-mgmt)

test data. When used in reference to ML data, the subset of the dataset used to test a trained
model. (Google Machine Learning Glossary: https://developers.google.com/machine-
learning/glossary)

training data. When used in reference to ML data, the subset of the dataset used to train a
model. (Google Machine Learning Glossary: https://developers.google.com/machine-
learning/glossary)

transfer learning. ML method where a model developed for one task is applied to another, often
related, task.

unit testing. A software testing method by which individual units of source code—sets of one or
more computer program modules together with associated control data, usage procedures, and
operating procedures—are tested to determine whether they are fit for use. (Huizinga and
Kolawa 2007, 75)
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unsupervised learning.

e ML that learns the underlying structure or distribution of unlabeled input data. (Al
Principles: Recommendations on the Ethical Use of Al by DoD)

e  When referring to ML, training a model to find patterns in a dataset, typically an
unlabeled dataset. (Google Machine Learning Glossary:
https://developers.google.com/machine-learning/glossary)

validation. The assessment of a planned or delivered system to meet sponsor’s operational need
in the most realistic environment achievable. (Al Principles: Recommendations on the Ethical
Use of Al by DoD)

validation data. A subset of the dataset—disjoint from the training data—used in validation of
an ML model. This data is utilized during the ML training process to evaluate the quality of the
ML model and fine-tune hyperparameters. Because the validation set is disjoint from the training
set, validation helps ensure that the model’s performance generalizes beyond the training set.

verification. The process of assessing how well a system meets a specification requirement. (Al
Principles: Recommendations on the Ethical Use of Al by DoD)

white box testing. Cybersecurity testing which utilizes cooperative knowledge about how the
system was designed and implemented.
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Acronyms

AFSIM
Al
AMLAS
CAE
CD
CDAO
CI

COE
CONEMP
CONOPS
CPS
CPU

CT
DARPA
DAU
DEM&S
DoD
DoDD
DoDI
DOT&E
DT
DT&E
DTE&A
dTEaaC
FTRT
GPS
HACMS
HAT
HITL

Acronyms

Advanced Framework for Simulation, Integration, and Modeling
artificial intelligence

Assurance of Machine Learning for use in Autonomous Systems
claims, arguments, and evidence

continuous delivery

Chief Digital and Artificial Intelligence Office
continuous integration

center of excellence

concept of employment

concept of operations

cyber-physical systems

central processing unit

contractor test/testing

Defense Advanced Research Projects Agency
Defense Acquisition University

Digital Engineering, Modeling and Simulation
Department of Defense

DoD directive

DoD instruction

Director, Operational Test and Evaluation
developmental test/testing

developmental test and evaluation

Developmental Test, Evaluation, and Assessments
developmental Test and Evaluation as a Continuum
faster than real time

Global Positioning System

High-Assurance Cyber Military Systems
human-autonomy team/teaming

human in the loop
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HMT
HOOTL
HOTL
HSI

HW
IEEE
IMPRINT
ISTQB
IWARS
JCIDS
KPI

LVC
M&S
MIT

ML
MOSA
NASA
NAVAIR
OAM
OODA
OT

PIL
PSASS
R&D

SIL
S&T
SoS
STAT
STPA

Acronyms

human-machine teaming

human out of the loop

human on the loop

human systems integration

hardware

Institute of Electrical and Electronics Engineers

Improved Performance Research Integration Tool

International Software Testing Qualifications Board

Infantry Warrior Simulation

Joint Capabilities Integration and Development System

key performance indicator

live, virtual, and constructive
modeling and simulation
Massachusetts Institute of Technology
machine learning

Modular Open Systems Approach
National Aeronautics and Space Administration
Naval Air Systems Command

Open Architecture Management
observe, orient, decide, act
operational test/testing

processor in the loop

Partnership for Systems Approaches to Safety and Security

research and development
random-access memory

system integration laboratory

science and technology

system of systems

scientific test and analysis techniques

System-Theoretic Process Analysis
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SUT
SW
SysML
T&E
TEMP
TORE
TRMC
TTP
UCA
UML
USD(P)
USD(R&E)
UTP
V&V
VC
VCICS
VV&A
XAI

Acronyms

system under test

software

Systems Modeling Language

test and evaluation

Test and Evaluation Master Plan
task-oriented requirements engineering
Test Resource Management Center
tactics, techniques, and procedures

unsafe control action

Unified Modeling Language

Under Secretary of Defense for Policy
Under Secretary of Defense for Research and Engineering
UML Testing Profile

verification and validation

virtual and constructive

Vice Chairman of the Joint Chiefs of Staff
verification, validation, and accreditation

explainable artificial intelligence
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